#include "opcode.h" #include #include #include #include #include #define bench 0 #define debug 1 #define IO 0 #define keypoll 0 #if bench #include #endif #define THREADS 1 #define BENCH_INST 100000000*THREADS #define CTRL_ADDR 0xC000 #define TX_ADDR 0xC001 #define RX_ADDR 0xC002 #define CURSES_BACKSPACE 0x7F uint64_t clk[THREADS]; /* Per Thread Clock cycles. */ uint64_t tclk; /* Total Clock cycles. */ uint64_t inst[THREADS]; uint64_t inss; uint8_t threads_done = 0; uint8_t kbd_rdy = 0; uint8_t wai = 0; uint8_t irq = 0; WINDOW *scr; pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER; pthread_mutex_t main_mutex = PTHREAD_MUTEX_INITIALIZER; pthread_cond_t cond = PTHREAD_COND_INITIALIZER; pthread_cond_t main_cond = PTHREAD_COND_INITIALIZER; struct suxthr { struct sux sx; uint8_t th; }; #if bench double ipc; struct timeval str[THREADS], en[THREADS]; #endif void *run(void *args) { struct suxthr *thr = (void *)args; struct sux *cpu = &thr->sx; uint8_t thread = thr->th; uint64_t address = 0; uint8_t prefix = 0; uint8_t opcode = 0; uint8_t end = 0; uint64_t sum = 0; uint64_t value = 0; uint64_t iclk = 0; uint64_t ins = 0; uint64_t sign = 0; char *s = malloc(2048); uint8_t lines = (6*thread)+2; uint8_t bcd[4]; uint8_t idx = 3, iscol = 0; uint16_t tv = 0xFF50; /* Starting address of the Thread Vectors. */ int x = 0, y = 0; uint8_t esc = 0; #if bench gettimeofday(&str[thread], 0); #endif while (!end) { address = 0; if (wai) { for (int8_t i = 56; i >= 0; i-=8) { if (i) addr[(cpu->stk_st[thread] << 16)+cpu->sp[thread]] = (uint64_t)cpu->pc[thread]-1 >> i; else addr[(cpu->stk_st[thread] << 16)+cpu->sp[thread]] = (uint64_t)cpu->pc[thread]-1 & 0xFF; cpu->sp[thread]--; } addr[(cpu->stk_st[thread] << 16)+cpu->sp[thread]] = (uint64_t)cpu->ps >> 8*thread; cpu->sp[thread]--; cpu->i[thread] = 1; (cpu->i[thread]) ? (cpu->ps |= (I << 8*thread)) : (cpu->ps &= ~(I << 8*thread)); cpu->pc[thread] = (uint64_t)addr[0xFFA0] | (uint64_t)addr[0xFFA1] << 8 | (uint64_t)addr[0xFFA2] << 16 | (uint64_t)addr[0xFFA3] << 24 | (uint64_t)addr[0xFFA4] << 32 | (uint64_t)addr[0xFFA5] << 40 | (uint64_t)addr[0xFFA6] << 48 | (uint64_t)addr[0xFFA7] << 56; wai = 0; kbd_rdy &= (uint8_t)~(1 << thread); } prefix = addr[cpu->pc[thread]]; if ((prefix & 0x0F) == 0x07) cpu->pc[thread]++; else prefix = 0; opcode = addr[cpu->pc[thread]]; #if debug && !bench #if keypoll pthread_mutex_lock(&mutex); #endif mvwprintw(scr, lines, 0, "pc: $%08llx, a: $%016llx, b: $%016llx, x: $%016llx, y: $%016llx" ", sp: $%04lx, ps: $%016llx, prefix: $%02x, opcode: $%02x, thread: %u, inst: %s \r" , cpu->pc[thread], cpu->a[thread], cpu->b[thread], cpu->x[thread], cpu->y[thread] , cpu->sp[thread], cpu->ps, prefix, opcode, thread, opname[opcode]); wrefresh(scr); #if keypoll pthread_mutex_unlock(&mutex); #endif lines++; if (lines > 24*(thread+1)) lines = (24*thread)+2; #endif uint8_t rs = (prefix & 0x30) >> 4; uint8_t regsize = (1 << rs); uint8_t tmp; address = cpu->pc[thread]; cpu->pc[thread]++; iclk++; switch(opcode) { case CPS: /* Clear Processor Status. */ for (uint8_t i = 0; i < 8; i++) { cpu->c[i] = 0; cpu->z[i] = 0; cpu->i[i] = 0; cpu->s[i] = 0; cpu->v[i] = 0; cpu->n[i] = 0; } cpu->ps &= 0; break; case ADC: /* ADC Immediate. */ case AAB: /* Add Accumulator with carry by B register. */ case 0x03: /* ADC Absolute. */ case 0x05: /* ADC Zero Matrix. */ if (opcode != AAB) { if (opcode == ADC) { address = cpu->pc[thread]; cpu->pc[thread]+=regsize; } if (opcode == 0x03) { address = (uint64_t)addr[cpu->pc[thread]] | (uint64_t)addr[cpu->pc[thread]+1] << 8 | (uint64_t)addr[cpu->pc[thread]+2] << 16 | (uint64_t)addr[cpu->pc[thread]+3] << 24 | (uint64_t)addr[cpu->pc[thread]+4] << 32 | (uint64_t)addr[cpu->pc[thread]+5] << 40 | (uint64_t)addr[cpu->pc[thread]+6] << 48 | (uint64_t)addr[cpu->pc[thread]+7] << 56; cpu->pc[thread]+=8; iclk++; } if (opcode == 0x05) { address = addr[cpu->pc[thread]] | addr[cpu->pc[thread]+1] << 8 | addr[cpu->pc[thread]+2] << 16 | addr[cpu->pc[thread]+3] << 24; cpu->pc[thread]+=4; iclk++; } value = addr[address]; if (regsize >= 2) { value += (uint64_t)addr[address+1] << 8; } if (regsize >= 4) { value += (uint64_t)addr[address+2] << 16; value += (uint64_t)addr[address+3] << 24; } if (regsize >= 8) { value += (uint64_t)addr[address+4] << 32; value += (uint64_t)addr[address+5] << 40; value += (uint64_t)addr[address+6] << 48; value += (uint64_t)addr[address+7] << 56; } } else { value = cpu->b[thread]; } sum = cpu->a[thread]+value+cpu->c[thread]; cpu->a[thread] = sum; cpu->z[thread] = (sum == 0); cpu->n[thread] = (sum >> 63); cpu->v[thread] = !((cpu->a[thread]^value) & 0x8000000000000000) && ((cpu->a[thread]^sum) & 0x8000000000000000); cpu->c[thread] = (sum < value); (cpu->z[thread]) ? (cpu->ps |= (Z << 8*thread)) : (cpu->ps &= ~(Z << 8*thread)); (cpu->n[thread]) ? (cpu->ps |= (N << 8*thread)) : (cpu->ps &= ~(N << 8*thread)); (cpu->v[thread]) ? (cpu->ps |= (V << 8*thread)) : (cpu->ps &= ~(V << 8*thread)); (cpu->c[thread]) ? (cpu->ps |= (C << 8*thread)) : (cpu->ps &= ~(C << 8*thread)); break; case PHB: /* PusH B register to stack. */ tmp = addr[cpu->pc[thread]++]; if (tmp > 7) tmp = 7; for (int8_t i = tmp*8; i >= 0; i-=8) { if (i) addr[(cpu->stk_st[thread] << 16)+cpu->sp[thread]] = (uint64_t)cpu->b[thread] >> i; else addr[(cpu->stk_st[thread] << 16)+cpu->sp[thread]] = (uint64_t)cpu->b[thread] & 0xFF; cpu->sp[thread]--; } break; case PHP: /* PusH Processor status to stack. */ tmp = addr[cpu->pc[thread]++]; if (tmp > 7) tmp = 7; for (int8_t i = tmp*8; i >= 0; i-=8) { if (i) addr[(cpu->stk_st[thread] << 16)+cpu->sp[thread]] = (uint64_t)cpu->ps >> i; else addr[(cpu->stk_st[thread] << 16)+cpu->sp[thread]] = (uint64_t)cpu->ps & 0xFF; cpu->sp[thread]--; } break; case PHA: /* PusH Accumulator to stack. */ tmp = addr[cpu->pc[thread]++]; if (tmp > 7) tmp = 7; for (int8_t i = tmp*8; i >= 0; i-=8) { if (i) addr[(cpu->stk_st[thread] << 16)+cpu->sp[thread]] = (uint64_t)cpu->a[thread] >> i; else addr[(cpu->stk_st[thread] << 16)+cpu->sp[thread]] = (uint64_t)cpu->a[thread] & 0xFF; cpu->sp[thread]--; } break; case PHY: /* PusH Y register to stack. */ tmp = addr[cpu->pc[thread]++]; if (tmp > 7) tmp = 7; for (int8_t i = tmp*8; i >= 0; i-=8) { if (i) addr[(cpu->stk_st[thread] << 16)+cpu->sp[thread]] = (uint64_t)cpu->y[thread] >> i; else addr[(cpu->stk_st[thread] << 16)+cpu->sp[thread]] = (uint64_t)cpu->y[thread] & 0xFF; cpu->sp[thread]--; } break; case TAY: /* Transfer Accumulator to Y. */ case TAX: /* Transfer Accumulator to Y. */ case TYX: /* Transfer Y to X. */ case TYA: /* Transfer Y to Accumulator. */ case TXA: /* Transfer X to Accumulator. */ case TXY: /* Transfer X to Y. */ case TAB: /* Transfer Accumulator to B. */ case TSX: /* Transfer Stack pointer to X. */ case TBA: /* Transfer B to Accumulator. */ case TXS: /* Transfer X to Stack pointer. */ if (opcode == TAY) cpu->y[thread] = cpu->a[thread]; if (opcode == TAX) cpu->x[thread] = cpu->a[thread]; if (opcode == TYX) cpu->x[thread] = cpu->y[thread]; if (opcode == TYA) cpu->a[thread] = cpu->y[thread]; if (opcode == TXA) cpu->a[thread] = cpu->x[thread]; if (opcode == TXY) cpu->y[thread] = cpu->x[thread]; if (opcode == TAB) { cpu->b[thread] = cpu->a[thread]; cpu->z[thread] = (cpu->b[thread] == 0); cpu->n[thread] = (cpu->b[thread] >> 63); } if (opcode == TSX) { cpu->x[thread] = cpu->sp[thread] & 0xFFFF; cpu->x[thread] = cpu->stk_st[thread] << 16; } if (opcode == TBA) cpu->a[thread] = cpu->b[thread]; if (opcode == TXS) { cpu->sp[thread] = cpu->x[thread]; if (prefix == 0x17 && (value == thread+1 || value > 8)) { cpu->stk_st[thread] = value & 0xFF; cpu->stk_st[thread] += value << 16; cpu->pc[thread]+=2; } } if (opcode == TYA || opcode == TXA || opcode == TBA) { cpu->z[thread] = (cpu->a[thread] == 0); cpu->n[thread] = (cpu->a[thread] >> 63); } if (opcode == TAY || opcode == TXY) { cpu->z[thread] = (cpu->y[thread] == 0); cpu->n[thread] = (cpu->y[thread] >> 63); } if (opcode == TAX || opcode == TYX) { cpu->z[thread] = (cpu->x[thread] == 0); cpu->n[thread] = (cpu->x[thread] >> 63); } (cpu->z[thread]) ? (cpu->ps |= (Z << 8*thread)) : (cpu->ps &= ~(Z << 8*thread)); (cpu->n[thread]) ? (cpu->ps |= (N << 8*thread)) : (cpu->ps &= ~(N << 8*thread)); break; case PHX: /* PusH X register to stack. */ tmp = addr[cpu->pc[thread]++]; if (tmp > 7) tmp = 7; for (int8_t i = tmp*8; i >= 0; i-=8) { if (i) addr[(cpu->stk_st[thread] << 16)+cpu->sp[thread]] = (uint64_t)cpu->x[thread] >> i; else addr[(cpu->stk_st[thread] << 16)+cpu->sp[thread]] = (uint64_t)cpu->x[thread] & 0xFF; cpu->sp[thread]--; } break; case JMP: /* JMP Absolute. */ address = (uint64_t)addr[cpu->pc[thread]] | (uint64_t)addr[cpu->pc[thread]+1] << 8 | (uint64_t)addr[cpu->pc[thread]+2] << 16 | (uint64_t)addr[cpu->pc[thread]+3] << 24 | (uint64_t)addr[cpu->pc[thread]+4] << 32 | (uint64_t)addr[cpu->pc[thread]+5] << 40 | (uint64_t)addr[cpu->pc[thread]+6] << 48 | (uint64_t)addr[cpu->pc[thread]+7] << 56; cpu->pc[thread]+=8; iclk++; cpu->pc[thread] = address; break; case SBC: /* SBC Immediate. */ case SAB: /* Subtract Accumulator with carry by B register. */ case 0x13: /* SBC Absolute. */ case 0x15: /* SBC Zero Matrix. */ if (opcode != SAB) { if (opcode == SBC) { address = cpu->pc[thread]; cpu->pc[thread]+=regsize; } if (opcode == 0x13) { address = (uint64_t)addr[cpu->pc[thread]] | (uint64_t)addr[cpu->pc[thread]+1] << 8 | (uint64_t)addr[cpu->pc[thread]+2] << 16 | (uint64_t)addr[cpu->pc[thread]+3] << 24 | (uint64_t)addr[cpu->pc[thread]+4] << 32 | (uint64_t)addr[cpu->pc[thread]+5] << 40 | (uint64_t)addr[cpu->pc[thread]+6] << 48 | (uint64_t)addr[cpu->pc[thread]+7] << 56; cpu->pc[thread]+=8; iclk++; } if (opcode == 0x15) { address = addr[cpu->pc[thread]] | addr[cpu->pc[thread]+1] << 8 | addr[cpu->pc[thread]+2] << 16 | addr[cpu->pc[thread]+3] << 24; cpu->pc[thread]+=4; iclk++; } value = addr[address]; if (regsize >= 2) { value += (uint64_t)addr[address+1] << 8; } if (regsize >= 4) { value += (uint64_t)addr[address+2] << 16; value += (uint64_t)addr[address+3] << 24; } if (regsize >= 8) { value += (uint64_t)addr[address+4] << 32; value += (uint64_t)addr[address+5] << 40; value += (uint64_t)addr[address+6] << 48; value += (uint64_t)addr[address+7] << 56; } } else { value = cpu->b[thread]; } sum = cpu->a[thread]-value-!cpu->c[thread]; cpu->z[thread] = (sum == 0); cpu->n[thread] = (sum >> 63); cpu->v[thread] = ((cpu->a[thread]^value) & 0x8000000000000000) && ((cpu->a[thread]^sum) & 0x8000000000000000); cpu->c[thread] = (sum > value); (cpu->z[thread]) ? (cpu->ps |= (Z << 8*thread)) : (cpu->ps &= ~(Z << 8*thread)); (cpu->n[thread]) ? (cpu->ps |= (N << 8*thread)) : (cpu->ps &= ~(N << 8*thread)); (cpu->v[thread]) ? (cpu->ps |= (V << 8*thread)) : (cpu->ps &= ~(V << 8*thread)); (cpu->c[thread]) ? (cpu->ps |= (C << 8*thread)) : (cpu->ps &= ~(C << 8*thread)); cpu->a[thread] = sum; break; case PLB: /* PuLl B register from stack. */ tmp = addr[cpu->pc[thread]++]; if (tmp > 7) tmp = 7; for (uint8_t i = 0; i < (tmp+1)*8; i+=8) { cpu->sp[thread]++; if (i) cpu->b[thread] += (uint64_t)addr[(cpu->stk_st[thread] << 16)+cpu->sp[thread]] << i; else cpu->b[thread] = (uint64_t)addr[(cpu->stk_st[thread] << 16)+cpu->sp[thread]] & 0xFF; } break; case PLP: /* PuLl Processor status from stack. */ tmp = addr[cpu->pc[thread]++]; if (tmp > 7) tmp = 7; for (uint8_t i = 0; i < (tmp+1)*8; i+=8) { cpu->sp[thread]++; if (i) cpu->ps += (uint64_t)addr[(cpu->stk_st[thread] << 16)+cpu->sp[thread]] << i; else cpu->ps = (uint64_t)addr[(cpu->stk_st[thread] << 16)+cpu->sp[thread]] & 0xFF; } break; case PLA: /* PuLl Accumulator from stack. */ tmp = addr[cpu->pc[thread]++]; if (tmp > 7) tmp = 7; for (uint8_t i = 0; i < (tmp+1)*8; i+=8) { cpu->sp[thread]++; if (i) cpu->a[thread] += (uint64_t)addr[(cpu->stk_st[thread] << 16)+cpu->sp[thread]] << i; else cpu->a[thread] = (uint64_t)addr[(cpu->stk_st[thread] << 16)+cpu->sp[thread]] & 0xFF; } break; case PLY: /* PuLl Y register from stack. */ tmp = addr[cpu->pc[thread]++]; if (tmp > 7) tmp = 7; for (uint8_t i = 0; i < (tmp+1)*8; i+=8) { cpu->sp[thread]++; if (i) cpu->y[thread] += (uint64_t)addr[(cpu->stk_st[thread] << 16)+cpu->sp[thread]] << i; else cpu->y[thread] = (uint64_t)addr[(cpu->stk_st[thread] << 16)+cpu->sp[thread]] & 0xFF; } break; case PLX: /* PuLl X register from stack. */ tmp = addr[cpu->pc[thread]++]; if (tmp > 7) tmp = 7; for (uint8_t i = 0; i < (tmp+1)*8; i+=8) { cpu->sp[thread]++; if (i) cpu->x[thread] += (uint64_t)addr[(cpu->stk_st[thread] << 16)+cpu->sp[thread]] << i; else cpu->x[thread] = (uint64_t)addr[(cpu->stk_st[thread] << 16)+cpu->sp[thread]] & 0xFF; } break; case 0x34: /* JSR Indirect. */ case 0x44: /* JSR Indexed Indirect. */ case 0x54: /* JSR Indirect Indexed. */ case JSR: /* Jump to SubRoutine. */ address = (uint64_t)addr[cpu->pc[thread]] | (uint64_t)addr[cpu->pc[thread]+1] << 8 | (uint64_t)addr[cpu->pc[thread]+2] << 16 | (uint64_t)addr[cpu->pc[thread]+3] << 24; if (opcode == 0x34 || opcode == 0x44 || opcode == 0x54) { address = (uint64_t)addr[address] | (uint64_t)addr[address+1] << 8 | (uint64_t)addr[address+2] << 16 | (uint64_t)addr[address+3] << 24 | (uint64_t)addr[address+4] << 32 | (uint64_t)addr[address+5] << 40 | (uint64_t)addr[address+6] << 48 | (uint64_t)addr[address+7] << 56; if (opcode == 0x44) address += cpu->x[thread]; if (opcode == 0x54) address += cpu->y[thread]; } cpu->pc[thread]+=4; for (int8_t i = 24; i >= 0; i-=8) { if (i) addr[(cpu->stk_st[thread] << 16)+cpu->sp[thread]] = (uint64_t)cpu->pc[thread] >> i; else addr[(cpu->stk_st[thread] << 16)+cpu->sp[thread]] = (uint64_t)cpu->pc[thread] & 0xFF; cpu->sp[thread]--; } cpu->pc[thread] = address; break; case AND: /* AND Immediate. */ case ABA: /* bitwise And with Accumulator, and B register. */ case 0x23: /* AND Absolute. */ case 0x25: /* AND Zero Matrix. */ if (opcode != ABA) { if (opcode == AND) { address = cpu->pc[thread]; cpu->pc[thread]+=regsize; } if (opcode == 0x23) { address = (uint64_t)addr[cpu->pc[thread]] | (uint64_t)addr[cpu->pc[thread]+1] << 8 | (uint64_t)addr[cpu->pc[thread]+2] << 16 | (uint64_t)addr[cpu->pc[thread]+3] << 24 | (uint64_t)addr[cpu->pc[thread]+4] << 32 | (uint64_t)addr[cpu->pc[thread]+5] << 40 | (uint64_t)addr[cpu->pc[thread]+6] << 48 | (uint64_t)addr[cpu->pc[thread]+7] << 56; cpu->pc[thread]+=8; iclk++; } if (opcode == 0x25) { address = addr[cpu->pc[thread]] | addr[cpu->pc[thread]+1] << 8 | addr[cpu->pc[thread]+2] << 16 | addr[cpu->pc[thread]+3] << 24; cpu->pc[thread]+=4; iclk++; } value = (uint64_t)addr[address]; if (regsize >= 2) value += (uint64_t)addr[address+1] << 8; if (regsize >= 4) { value += (uint64_t)addr[address+2] << 16; value += (uint64_t)addr[address+3] << 24; } if (regsize >= 8) { value += (uint64_t)addr[address+4] << 32; value += (uint64_t)addr[address+5] << 40; value += (uint64_t)addr[address+6] << 48; value += (uint64_t)addr[address+7] << 56; } } cpu->a[thread] &= value; cpu->z[thread] = (value == 0); cpu->n[thread] = (value >> 63); (cpu->z[thread]) ? (cpu->ps |= (Z << 8*thread)) : (cpu->ps &= ~(Z << 8*thread)); (cpu->n[thread]) ? (cpu->ps |= (N << 8*thread)) : (cpu->ps &= ~(N << 8*thread)); break; case STT: /* STart Thread. */ address = cpu->pc[thread]; cpu->pc[thread]++; value = addr[address]; cpu->crt |= value; for (uint8_t i = 0; i < 7; i++) { if ((value >> i) & 1) { address = (uint64_t)addr[tv+(8*i)] | (uint64_t)addr[tv+1+(8*i)] << 8 | (uint64_t)addr[tv+2+(8*i)] << 16 | (uint64_t)addr[tv+3+(8*i)] << 24 | (uint64_t)addr[tv+4+(8*i)] << 32 | (uint64_t)addr[tv+5+(8*i)] << 40 | (uint64_t)addr[tv+6+(8*i)] << 48 | (uint64_t)addr[tv+7+(8*i)] << 56; cpu->pc[i+1] = address; } } break; case BPO: /* BPO Absolute. */ case 0x64: /* BPO Zero Matrix. */ if (opcode == BPO) { address = (uint64_t)addr[cpu->pc[thread]] | (uint64_t)addr[cpu->pc[thread]+1] << 8 | (uint64_t)addr[cpu->pc[thread]+2] << 16 | (uint64_t)addr[cpu->pc[thread]+3] << 24 | (uint64_t)addr[cpu->pc[thread]+4] << 32 | (uint64_t)addr[cpu->pc[thread]+5] << 40 | (uint64_t)addr[cpu->pc[thread]+6] << 48 | (uint64_t)addr[cpu->pc[thread]+7] << 56; cpu->pc[thread]+=8; iclk++; } else { address = addr[cpu->pc[thread]] | addr[cpu->pc[thread]+1] << 8 | addr[cpu->pc[thread]+2] << 16 | addr[cpu->pc[thread]+3] << 24; cpu->pc[thread]+=4; iclk++; } if (cpu->n[thread]) cpu->pc[thread] = address; break; case ORA: /* ORA Immediate. */ case OAB: /* bitwise Or with Accumulator, and B register. */ case 0x33: /* ORA Absolute. */ case 0x35: /* ORA Zero Matrix. */ if (opcode != OAB) { if (opcode == ORA) { address = cpu->pc[thread]; cpu->pc[thread]+=regsize; } if (opcode == 0x39) { address = (uint64_t)addr[cpu->pc[thread]] | (uint64_t)addr[cpu->pc[thread]+1] << 8 | (uint64_t)addr[cpu->pc[thread]+2] << 16 | (uint64_t)addr[cpu->pc[thread]+3] << 24 | (uint64_t)addr[cpu->pc[thread]+4] << 32 | (uint64_t)addr[cpu->pc[thread]+5] << 40 | (uint64_t)addr[cpu->pc[thread]+6] << 48 | (uint64_t)addr[cpu->pc[thread]+7] << 56; cpu->pc[thread]+=8; iclk++; } if (opcode == 0x3B) { address = addr[cpu->pc[thread]] | addr[cpu->pc[thread]+1] << 8 | addr[cpu->pc[thread]+2] << 16 | addr[cpu->pc[thread]+3] << 24; cpu->pc[thread]+=4; iclk++; } value = (uint64_t)addr[address]; if (regsize >= 2) value += (uint64_t)addr[address+1] << 8; if (regsize >= 4) { value += (uint64_t)addr[address+2] << 16; value += (uint64_t)addr[address+3] << 24; } if (regsize >= 8) { value += (uint64_t)addr[address+4] << 32; value += (uint64_t)addr[address+5] << 40; value += (uint64_t)addr[address+6] << 48; value += (uint64_t)addr[address+7] << 56; } } else { value = cpu->b[thread]; } cpu->a[thread] |= value; cpu->z[thread] = (value == 0); cpu->n[thread] = (value >> 63); (cpu->z[thread]) ? (cpu->ps |= (Z << 8*thread)) : (cpu->ps &= ~(Z << 8*thread)); (cpu->n[thread]) ? (cpu->ps |= (N << 8*thread)) : (cpu->ps &= ~(N << 8*thread)); break; case SEI: /* SEt Interrupt. */ cpu->i[thread] = 1; (cpu->ps |= (I << 8*thread)); break; case BNG: /* BNG Absolute. */ case 0x74: /* BNG Zero Matrix. */ if (opcode == BNG) { address = (uint64_t)addr[cpu->pc[thread]] | (uint64_t)addr[cpu->pc[thread]+1] << 8 | (uint64_t)addr[cpu->pc[thread]+2] << 16 | (uint64_t)addr[cpu->pc[thread]+3] << 24 | (uint64_t)addr[cpu->pc[thread]+4] << 32 | (uint64_t)addr[cpu->pc[thread]+5] << 40 | (uint64_t)addr[cpu->pc[thread]+6] << 48 | (uint64_t)addr[cpu->pc[thread]+7] << 56; cpu->pc[thread]+=8; iclk++; } else { address = addr[cpu->pc[thread]] | addr[cpu->pc[thread]+1] << 8 | addr[cpu->pc[thread]+2] << 16 | addr[cpu->pc[thread]+3] << 24; cpu->pc[thread]+=4; iclk++; } if (!cpu->n[thread]) cpu->pc[thread] = address; break; case XOR: /* XOR Immediate. */ case XAB: /* bitwise Xor with Accumulator, and B register. */ case 0x43: /* XOR Absolute. */ case 0x45: /* XOR Zero Matrix. */ if (opcode != XAB) { if (opcode == XOR) { address = cpu->pc[thread]; cpu->pc[thread]+=regsize; } if (opcode == 0x49) { address = (uint64_t)addr[cpu->pc[thread]] | (uint64_t)addr[cpu->pc[thread]+1] << 8 | (uint64_t)addr[cpu->pc[thread]+2] << 16 | (uint64_t)addr[cpu->pc[thread]+3] << 24 | (uint64_t)addr[cpu->pc[thread]+4] << 32 | (uint64_t)addr[cpu->pc[thread]+5] << 40 | (uint64_t)addr[cpu->pc[thread]+6] << 48 | (uint64_t)addr[cpu->pc[thread]+7] << 56; cpu->pc[thread]+=8; iclk++; } if (opcode == 0x4B) { address = addr[cpu->pc[thread]] | addr[cpu->pc[thread]+1] << 8 | addr[cpu->pc[thread]+2] << 16 | addr[cpu->pc[thread]+3] << 24; cpu->pc[thread]+=4; iclk++; } value = (uint64_t)addr[address]; if (regsize >= 2) value += (uint64_t)addr[address+1] << 8; if (regsize >= 4) { value += (uint64_t)addr[address+2] << 16; value += (uint64_t)addr[address+3] << 24; } if (regsize >= 8) { value += (uint64_t)addr[address+4] << 32; value += (uint64_t)addr[address+5] << 40; value += (uint64_t)addr[address+6] << 48; value += (uint64_t)addr[address+7] << 56; } } else { value = cpu->b[thread]; } cpu->a[thread] ^= value; cpu->z[thread] = (value == 0); cpu->n[thread] = (value >> 63); (cpu->z[thread]) ? (cpu->ps |= (Z << 8*thread)) : (cpu->ps &= ~(Z << 8*thread)); (cpu->n[thread]) ? (cpu->ps |= (N << 8*thread)) : (cpu->ps &= ~(N << 8*thread)); break; case CLI: /* CLear Interrupt. */ cpu->i[thread] = 0; (cpu->ps &= ~(I << 8*thread)); break; case BCS: /* BCS Absolute. */ case 0x84: /* BCS Zero Matrix. */ if (opcode == BCS) { address = (uint64_t)addr[cpu->pc[thread]] | (uint64_t)addr[cpu->pc[thread]+1] << 8 | (uint64_t)addr[cpu->pc[thread]+2] << 16 | (uint64_t)addr[cpu->pc[thread]+3] << 24 | (uint64_t)addr[cpu->pc[thread]+4] << 32 | (uint64_t)addr[cpu->pc[thread]+5] << 40 | (uint64_t)addr[cpu->pc[thread]+6] << 48 | (uint64_t)addr[cpu->pc[thread]+7] << 56; cpu->pc[thread]+=8; iclk++; } else { address = addr[cpu->pc[thread]] | addr[cpu->pc[thread]+1] << 8 | addr[cpu->pc[thread]+2] << 16 | addr[cpu->pc[thread]+3] << 24; cpu->pc[thread]+=4; iclk++; } if (cpu->c[thread]) cpu->pc[thread] = address; break; case LSL: /* LSL Immediate. */ case LLB: /* Logical shift Left accumulator by B. */ case 0x53: /* LSL Absolute. */ case 0x55: /* LSL Zero Matrix. */ if (opcode != LLB) { if (opcode == LSL) { address = cpu->pc[thread]; cpu->pc[thread]++; } if (opcode == 0x53) { address = (uint64_t)addr[cpu->pc[thread]] | (uint64_t)addr[cpu->pc[thread]+1] << 8 | (uint64_t)addr[cpu->pc[thread]+2] << 16 | (uint64_t)addr[cpu->pc[thread]+3] << 24 | (uint64_t)addr[cpu->pc[thread]+4] << 32 | (uint64_t)addr[cpu->pc[thread]+5] << 40 | (uint64_t)addr[cpu->pc[thread]+6] << 48 | (uint64_t)addr[cpu->pc[thread]+7] << 56; cpu->pc[thread]+=8; iclk++; } if (opcode == 0x55) { address = addr[cpu->pc[thread]] | addr[cpu->pc[thread]+1] << 8 | addr[cpu->pc[thread]+2] << 16 | addr[cpu->pc[thread]+3] << 24; cpu->pc[thread]+=4; iclk++; } value = addr[address]; } else { value = cpu->b[thread]; } sum = (value < 64) ? cpu->a[thread] << value : 0; cpu->z[thread] = (sum == 0); cpu->n[thread] = (sum >> 63); cpu->c[thread] = cpu->a[thread] >> 64-value; cpu->a[thread] = sum; (cpu->z[thread]) ? (cpu->ps |= (Z << 8*thread)) : (cpu->ps &= ~(Z << 8*thread)); (cpu->n[thread]) ? (cpu->ps |= (N << 8*thread)) : (cpu->ps &= ~(N << 8*thread)); (cpu->c[thread]) ? (cpu->ps |= (C << 8*thread)) : (cpu->ps &= ~(C << 8*thread)); break; case SEC: /* SEt Carry flag.*/ cpu->c[thread] = 1; (cpu->ps |= (C << 8*thread)); break; case STA: /* STA Absolute. */ case STY: /* STY Absolute. */ case STX: /* STX Absolute. */ case STB: /* STB Absolute. */ case 0x7B: /* STA Zero Matrix. */ case 0x7D: /* STY Zero Matrix. */ case 0x7E: /* STX Zero Matrix. */ case 0x7F: /* STB Zero Matrix. */ case 0x8B: /* STA Zero Matrix, Indexed with X. */ case 0x8D: /* STY Zero Matrix, Indexed with X. */ case 0x8F: /* STA Zero Matrix, Indexed with X. */ case 0x9B: /* STA Zero Matrix, Indexed with Y. */ case 0x9E: /* STX Zero Matrix, Indexed with Y. */ case 0x9F: /* STA Zero Matrix, Indexed with Y. */ case 0xAB: /* STA Indirect. */ case 0xAD: /* STY Indirect. */ case 0xAE: /* STX Indirect. */ case 0xAF: /* STB Indirect. */ case 0xBB: /* STA Indexed Indirect. */ case 0xBD: /* STY Indexed Indirect. */ case 0xBF: /* STB Indexed Indirect. */ case 0xCB: /* STA Indirect Indexed. */ case 0xCE: /* STX Indirect Indexed. */ case 0xCF: /* STB Indirect Indexed. */ if (opcode == STA || opcode == STY || opcode == STX || opcode == STB) { address = (uint64_t)addr[cpu->pc[thread]] | (uint64_t)addr[cpu->pc[thread]+1] << 8 | (uint64_t)addr[cpu->pc[thread]+2] << 16 | (uint64_t)addr[cpu->pc[thread]+3] << 24 | (uint64_t)addr[cpu->pc[thread]+4] << 32 | (uint64_t)addr[cpu->pc[thread]+5] << 40 | (uint64_t)addr[cpu->pc[thread]+6] << 48 | (uint64_t)addr[cpu->pc[thread]+7] << 56; cpu->pc[thread]+=8; iclk++; } else { address = addr[cpu->pc[thread]] | addr[cpu->pc[thread]+1] << 8 | addr[cpu->pc[thread]+2] << 16 | addr[cpu->pc[thread]+3] << 24; if (opcode == 0xAB || opcode == 0xAD || opcode == 0xAE || opcode == 0xAF || opcode == 0xBB || opcode == 0xBD || opcode == 0xBF || opcode == 0xCB || opcode == 0xCE || opcode == 0xCF) { address = (uint64_t)addr[address] | (uint64_t)addr[address+1] << 8 | (uint64_t)addr[address+2] << 16 | (uint64_t)addr[address+3] << 24 | (uint64_t)addr[address+4] << 32 | (uint64_t)addr[address+5] << 40 | (uint64_t)addr[address+6] << 48 | (uint64_t)addr[address+7] << 56; } if (opcode == 0x8B || opcode == 0x8D || opcode == 0x8F || opcode == 0xBB || opcode == 0xBD || opcode == 0xBF) address += cpu->x[thread]; if (opcode == 0x9B || opcode == 0x9E || opcode == 0x9F || opcode == 0xCB || opcode == 0xCE || opcode == 0xCF) address += cpu->y[thread]; cpu->pc[thread]+=4; iclk++; } if (opcode == STA || opcode == 0x7B || opcode == 0x8B || opcode == 0x9B) value = cpu->a[thread]; if (opcode == STY || opcode == 0x7D || opcode == 0x8D) value = cpu->y[thread]; if (opcode == STX || opcode == 0x7E || opcode == 0x9E) value = cpu->x[thread]; if (opcode == STB || opcode == 0x7F || opcode == 0x8F || opcode == 0x9F) value = cpu->b[thread]; addr[address] = value & 0xFF; #if IO if (address == TX_ADDR) { #if keypoll pthread_mutex_lock(&mutex); #endif if (esc) { switch(addr[address]) { case 'A': if (y > 0) y--; wmove(scr, y, x); esc = 0; break; case 'B': if (y < getmaxy(scr)) y++; wmove(scr, y, x); esc = 0; break; case 'C': if (x < getmaxx(scr)) x++; wmove(scr, y, x); esc = 0; break; case 'D': if (x > 0) x--; wmove(scr, y, x); esc = 0; break; case 'H': if (!bcd[2] && !bcd[3]) y = 0; else y = ((bcd[3]*10) + bcd[2]); if (!bcd[0] && !bcd[1]) x = 0; else x = ((bcd[1]*10) + bcd[0]); idx = 3; wmove(scr, y, x); bcd[0] = 0; bcd[1] = 0; bcd[2] = 0; bcd[3] = 0; esc = 0; break; case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': bcd[idx--] = (addr[address] - '0'); break; default: iscol = (addr[address] == ';'); break; } } else { if (addr[address] == CURSES_BACKSPACE || addr[address] == '\b') { if (x > 0) { x--; wmove(scr, y, x); } wdelch(scr); wrefresh(scr); } else if (addr[address] == '\033') { esc = 1; } else { wmove(scr, y, x); waddch(scr, addr[address]); wrefresh(scr); if (addr[address] == '\n') { x = 0; y+=1; } else { x+=1; } } } #if keypoll pthread_mutex_unlock(&mutex); #endif } #else if (address == TX_ADDR) { if (esc) { switch(addr[address]) { case 'A': if (y > 0) y--; esc = 0; break; case 'B': if (y < getmaxy(scr)) y++; esc = 0; break; case 'C': if (x < getmaxx(scr)) x++; esc = 0; break; case 'D': if (x > 0) x--; esc = 0; break; case 'H': if (!bcd[2] && !bcd[3]) y = 0; else y = ((bcd[3]*10) + bcd[2]); if (!bcd[0] && !bcd[1]) x = 0; else x = ((bcd[1]*10) + bcd[0]); mvwprintw(scr, getmaxy(scr)-25, 0, "x: %i, y: %i ", x, y); idx = 3; bcd[0] = 0; bcd[1] = 0; bcd[2] = 0; bcd[3] = 0; esc = 0; break; case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': bcd[idx--] = (addr[address] - '0'); break; default: iscol = (addr[address] == ';'); break; } } else { if (addr[address] == CURSES_BACKSPACE || addr[address] == '\b') { if (x > 0) { x--; } } else if (addr[address] == '\033') { esc = 1; } else { if (addr[address] == '\n') { x = 0; y+=1; } else { x+=1; } } } } #endif if (regsize >= 2) addr[address+1] = value >> 8; if (regsize >= 4) { addr[address+2] = value >> 16; addr[address+3] = value >> 24; } if (regsize >= 8) { addr[address+4] = value >> 32; addr[address+5] = value >> 40; addr[address+6] = value >> 48; addr[address+7] = value >> 56; } break; case BCC: /* BCC Absolute. */ case 0x94: /* BCC Zero Matrix. */ if (opcode == BCC) { address = (uint64_t)addr[cpu->pc[thread]] | (uint64_t)addr[cpu->pc[thread]+1] << 8 | (uint64_t)addr[cpu->pc[thread]+2] << 16 | (uint64_t)addr[cpu->pc[thread]+3] << 24 | (uint64_t)addr[cpu->pc[thread]+4] << 32 | (uint64_t)addr[cpu->pc[thread]+5] << 40 | (uint64_t)addr[cpu->pc[thread]+6] << 48 | (uint64_t)addr[cpu->pc[thread]+7] << 56; cpu->pc[thread]+=8; iclk++; } else { address = addr[cpu->pc[thread]] | addr[cpu->pc[thread]+1] << 8 | addr[cpu->pc[thread]+2] << 16 | addr[cpu->pc[thread]+3] << 24; cpu->pc[thread]+=4; iclk++; } if (!cpu->c[thread]) cpu->pc[thread] = address; break; case LSR: /* LSR Immediate. */ case LRB: /* Logical shift Right accumulator by B. */ case 0x63: /* LSR Absolute. */ case 0x65: /* LSR Zero Matrix. */ case ASR: /* ASR Immediate. */ case ARB: /* Arithmetic shift Right accumulator by B. */ case 0xE3: /* ASR Absolute. */ case 0xE5: /* ASR Zero Matrix. */ if (opcode != LRB || opcode != ARB) { if (opcode == LSR || opcode == ASR) { address = cpu->pc[thread]; cpu->pc[thread]++; } if (opcode == 0x63 || opcode == 0xE3) { address = (uint64_t)addr[cpu->pc[thread]] | (uint64_t)addr[cpu->pc[thread]+1] << 8 | (uint64_t)addr[cpu->pc[thread]+2] << 16 | (uint64_t)addr[cpu->pc[thread]+3] << 24 | (uint64_t)addr[cpu->pc[thread]+4] << 32 | (uint64_t)addr[cpu->pc[thread]+5] << 40 | (uint64_t)addr[cpu->pc[thread]+6] << 48 | (uint64_t)addr[cpu->pc[thread]+7] << 56; cpu->pc[thread]+=8; iclk++; } if (opcode == 0x65 || opcode == 0xE5) { address = addr[cpu->pc[thread]] | addr[cpu->pc[thread]+1] << 8 | addr[cpu->pc[thread]+2] << 16 | addr[cpu->pc[thread]+3] << 24; cpu->pc[thread]+=4; iclk++; } value = addr[address]; } else { value = cpu->b[thread]; } if (opcode == ASR || opcode == ARB || opcode == 0xE3 || opcode == 0xE5) { sign = cpu->a[thread] & 0x8000000000000000; sum = (value < 64) ? (cpu->a[thread] >> value) | sign : 0; } if (opcode == LSR || opcode == LRB || opcode == 0x63 || opcode == 0x65) { sum = (value < 64) ? cpu->a[thread] >> value : 0; } cpu->z[thread] = (sum == 0); cpu->n[thread] = (sum >> 63); cpu->c[thread] = cpu->a[thread] & 1; cpu->a[thread] = sum; (cpu->z[thread]) ? (cpu->ps |= (Z << 8*thread)) : (cpu->ps &= ~(Z << 8*thread)); (cpu->n[thread]) ? (cpu->ps |= (N << 8*thread)) : (cpu->ps &= ~(N << 8*thread)); (cpu->c[thread]) ? (cpu->ps |= (C << 8*thread)) : (cpu->ps &= ~(C << 8*thread)); break; case CLC: /* CLear Carry flag. */ cpu->c[thread] = 0; (cpu->ps &= ~(C << 8*thread)); break; case 0x56: /* LDB Absolute. */ case 0x59: /* LDA Absolute. */ case 0x5A: /* LDY Absolute. */ case 0x5C: /* LDX Absolute. */ case LDB: /* LDB Immediate. */ case LDA: /* LDA Immediate. */ case LDY: /* LDY Immediate. */ case LDX: /* LDX Immediate. */ case 0x76: /* LDB Zero Matrix. */ case 0x79: /* LDA Zero Matrix. */ case 0x7A: /* LDY Zero Matrix. */ case 0x7C: /* LDX Zero Matrix. */ case 0x86: /* LDB Zero Matrix, Indexed with X. */ case 0x89: /* LDA Zero Matrix, Indexed with X. */ case 0x8A: /* LDY Zero Matrix, Indexed with X. */ case 0x96: /* LDB Zero Matrix, Indexed with Y. */ case 0x99: /* LDA Zero Matrix, Indexed with Y. */ case 0x9C: /* LDX Zero Matrix, Indexed with Y. */ case 0xA6: /* LDB Indirect. */ case 0xA9: /* LDA Indirect. */ case 0xAA: /* LDY Indirect. */ case 0xAC: /* LDX Indirect. */ case 0xB6: /* LDB Indexed Indirect. */ case 0xB9: /* LDA Indexed Indirect. */ case 0xBA: /* LDY Indexed Indirect. */ case 0xC6: /* LDB Indirect Indexed. */ case 0xC9: /* LDA Indirect Indexed. */ case 0xCC: /* LDX Indirect Indexed. */ if (opcode == LDB || opcode == LDA || opcode == LDY || opcode == LDX) { address = cpu->pc[thread]; cpu->pc[thread]+=regsize; } else if (opcode == 0x56 || opcode == 0x59 || opcode == 0x5A || opcode == 0x5C) { address = (uint64_t)addr[cpu->pc[thread]] | (uint64_t)addr[cpu->pc[thread]+1] << 8 | (uint64_t)addr[cpu->pc[thread]+2] << 16 | (uint64_t)addr[cpu->pc[thread]+3] << 24 | (uint64_t)addr[cpu->pc[thread]+4] << 32 | (uint64_t)addr[cpu->pc[thread]+5] << 40 | (uint64_t)addr[cpu->pc[thread]+6] << 48 | (uint64_t)addr[cpu->pc[thread]+7] << 56; cpu->pc[thread]+=8; iclk++; } else { address = addr[cpu->pc[thread]] | addr[cpu->pc[thread]+1] << 8 | addr[cpu->pc[thread]+2] << 16 | addr[cpu->pc[thread]+3] << 24; if (opcode == 0xA6 || opcode == 0xA9 || opcode == 0xAA || opcode == 0xAC || opcode == 0xB6 || opcode == 0xB9 || opcode == 0xBA || opcode == 0xC6 || opcode == 0xC9 || opcode == 0xCC) { address = (uint64_t)addr[address] | (uint64_t)addr[address+1] << 8 | (uint64_t)addr[address+2] << 16 | (uint64_t)addr[address+3] << 24 | (uint64_t)addr[address+4] << 32 | (uint64_t)addr[address+5] << 40 | (uint64_t)addr[address+6] << 48 | (uint64_t)addr[address+7] << 56; } if (opcode == 0x86 || opcode == 0x89 || opcode == 0x8A || opcode == 0xB6 || opcode == 0xB9 || opcode == 0xBA) address += cpu->x[thread]; if (opcode == 0x96 || opcode == 0x99 || opcode == 0x9C || opcode == 0xC6 || opcode == 0xC9 || opcode == 0xCC) address += cpu->y[thread]; cpu->pc[thread]+=4; iclk++; } if (address == CTRL_ADDR) { pthread_mutex_lock(&main_mutex); pthread_cond_signal(&main_cond); pthread_mutex_unlock(&main_mutex); #if !keypoll pthread_mutex_lock(&mutex); pthread_cond_wait(&cond, &mutex); pthread_mutex_unlock(&mutex); #endif } value = (uint64_t)addr[address]; if (regsize >= 2) value += (uint64_t)addr[address+1] << 8; if (regsize >= 4) { value += (uint64_t)addr[address+2] << 16; value += (uint64_t)addr[address+3] << 24; } if (regsize >= 8) { value += (uint64_t)addr[address+4] << 32; value += (uint64_t)addr[address+5] << 40; value += (uint64_t)addr[address+6] << 48; value += (uint64_t)addr[address+7] << 56; } if (opcode == LDB || opcode == 0x56 || opcode == 0x76 || opcode == 0x86 || opcode == 0x96) cpu->b[thread] = value; if (opcode == LDA || opcode == 0x59 || opcode == 0x79 || opcode == 0x89 || opcode == 0x99) cpu->a[thread] = value; if (opcode == LDY || opcode == 0x5A || opcode == 0x7A || opcode == 0x8A) cpu->y[thread] = value; if (opcode == LDX || opcode == 0x5C || opcode == 0x7C || opcode == 0x9C) cpu->x[thread] = value; cpu->z[thread] = (value == 0); cpu->n[thread] = (value >> 63); (cpu->z[thread]) ? (cpu->ps |= (Z << 8*thread)) : (cpu->ps &= ~(Z << 8*thread)); (cpu->n[thread]) ? (cpu->ps |= (N << 8*thread)) : (cpu->ps &= ~(N << 8*thread)); break; case BEQ: /* BEQ Absolute. */ case 0xA4: /* BEQ Zero Matrix. */ if (opcode == BEQ) { address = (uint64_t)addr[cpu->pc[thread]] | (uint64_t)addr[cpu->pc[thread]+1] << 8 | (uint64_t)addr[cpu->pc[thread]+2] << 16 | (uint64_t)addr[cpu->pc[thread]+3] << 24 | (uint64_t)addr[cpu->pc[thread]+4] << 32 | (uint64_t)addr[cpu->pc[thread]+5] << 40 | (uint64_t)addr[cpu->pc[thread]+6] << 48 | (uint64_t)addr[cpu->pc[thread]+7] << 56; cpu->pc[thread]+=8; iclk++; } else { address = addr[cpu->pc[thread]] | addr[cpu->pc[thread]+1] << 8 | addr[cpu->pc[thread]+2] << 16 | addr[cpu->pc[thread]+3] << 24; cpu->pc[thread]+=4; iclk++; } if (cpu->z[thread]) cpu->pc[thread] = address; break; case ROL: /* ROL Immediate. */ case RLB: /* Rotate Left accumulator by B. */ case 0x73: /* ROL Absolute. */ case 0x75: /* ROL Zero Matrix. */ if (opcode != RLB) { if (opcode == ROL) { address = cpu->pc[thread]; cpu->pc[thread]++; } if (opcode == 0x73) { address = (uint64_t)addr[cpu->pc[thread]] | (uint64_t)addr[cpu->pc[thread]+1] << 8 | (uint64_t)addr[cpu->pc[thread]+2] << 16 | (uint64_t)addr[cpu->pc[thread]+3] << 24 | (uint64_t)addr[cpu->pc[thread]+4] << 32 | (uint64_t)addr[cpu->pc[thread]+5] << 40 | (uint64_t)addr[cpu->pc[thread]+6] << 48 | (uint64_t)addr[cpu->pc[thread]+7] << 56; cpu->pc[thread]+=8; iclk++; } if (opcode == 0x75) { address = addr[cpu->pc[thread]] | addr[cpu->pc[thread]+1] << 8 | addr[cpu->pc[thread]+2] << 16 | addr[cpu->pc[thread]+3] << 24; cpu->pc[thread]+=4; iclk++; } value = addr[address]; } else { value = cpu->b[thread]; } sum = cpu->a[thread] << value; sum |= cpu->c[thread]; cpu->z[thread] = (sum == 0); cpu->n[thread] = (sum >> 63); cpu->c[thread] = cpu->a[thread] >> (uint64_t)64-value; cpu->a[thread] = sum; (cpu->z[thread]) ? (cpu->ps |= (Z << 8*thread)) : (cpu->ps &= ~(Z << 8*thread)); (cpu->n[thread]) ? (cpu->ps |= (N << 8*thread)) : (cpu->ps &= ~(N << 8*thread)); (cpu->c[thread]) ? (cpu->ps |= (C << 8*thread)) : (cpu->ps &= ~(C << 8*thread)); break; case SSP: /* Set Stack Protection flag. */ cpu->s[thread] = 1; (cpu->ps |= (S << 8*thread)); break; case BNE: /* BNE Absolute. */ case 0xB4: /* BNE Zero Matrix. */ if (opcode == BNE) { address = (uint64_t)addr[cpu->pc[thread]] | (uint64_t)addr[cpu->pc[thread]+1] << 8 | (uint64_t)addr[cpu->pc[thread]+2] << 16 | (uint64_t)addr[cpu->pc[thread]+3] << 24 | (uint64_t)addr[cpu->pc[thread]+4] << 32 | (uint64_t)addr[cpu->pc[thread]+5] << 40 | (uint64_t)addr[cpu->pc[thread]+6] << 48 | (uint64_t)addr[cpu->pc[thread]+7] << 56; cpu->pc[thread]+=8; iclk++; } else { address = addr[cpu->pc[thread]] | addr[cpu->pc[thread]+1] << 8 | addr[cpu->pc[thread]+2] << 16 | addr[cpu->pc[thread]+3] << 24; cpu->pc[thread]+=4; iclk++; } if (!cpu->z[thread]) cpu->pc[thread] = address; break; case ROR: /* ROR Immediate. */ case RRB: /* Rotate Right accumulator by B. */ case 0x83: /* ROR Absolute. */ case 0x85: /* ROR Zero Matrix. */ if (opcode != RRB) { if (opcode == ROR) { address = cpu->pc[thread]; cpu->pc[thread]++; } if (opcode == 0x83) { address = (uint64_t)addr[cpu->pc[thread]] | (uint64_t)addr[cpu->pc[thread]+1] << 8 | (uint64_t)addr[cpu->pc[thread]+2] << 16 | (uint64_t)addr[cpu->pc[thread]+3] << 24 | (uint64_t)addr[cpu->pc[thread]+4] << 32 | (uint64_t)addr[cpu->pc[thread]+5] << 40 | (uint64_t)addr[cpu->pc[thread]+6] << 48 | (uint64_t)addr[cpu->pc[thread]+7] << 56; cpu->pc[thread]+=8; iclk++; } if (opcode == 0x85) { address = addr[cpu->pc[thread]] | addr[cpu->pc[thread]+1] << 8 | addr[cpu->pc[thread]+2] << 16 | addr[cpu->pc[thread]+3] << 24; cpu->pc[thread]+=4; iclk++; } value = addr[address]; } else { value = cpu->b[thread]; } sum = cpu->a[thread] >> value; sum |= (uint64_t)cpu->c[thread] << (uint64_t)64-value; cpu->z[thread] = (sum == 0); cpu->n[thread] = (sum >> 63); cpu->c[thread] = cpu->a[thread] & 1; cpu->a[thread] = sum; (cpu->z[thread]) ? (cpu->ps |= (Z << 8*thread)) : (cpu->ps &= ~(Z << 8*thread)); (cpu->n[thread]) ? (cpu->ps |= (N << 8*thread)) : (cpu->ps &= ~(N << 8*thread)); (cpu->c[thread]) ? (cpu->ps |= (C << 8*thread)) : (cpu->ps &= ~(C << 8*thread)); break; case CSP: /* Clear Stack Protection flag. */ cpu->s[thread] = 0; (cpu->ps &= ~(S << 8*thread)); break; case BVS: /* BVS Absolute. */ case 0xC4: /* BVS Zero Matrix. */ if (opcode == BVS) { address = (uint64_t)addr[cpu->pc[thread]] | (uint64_t)addr[cpu->pc[thread]+1] << 8 | (uint64_t)addr[cpu->pc[thread]+2] << 16 | (uint64_t)addr[cpu->pc[thread]+3] << 24 | (uint64_t)addr[cpu->pc[thread]+4] << 32 | (uint64_t)addr[cpu->pc[thread]+5] << 40 | (uint64_t)addr[cpu->pc[thread]+6] << 48 | (uint64_t)addr[cpu->pc[thread]+7] << 56; cpu->pc[thread]+=8; iclk++; } else { address = addr[cpu->pc[thread]] | addr[cpu->pc[thread]+1] << 8 | addr[cpu->pc[thread]+2] << 16 | addr[cpu->pc[thread]+3] << 24; cpu->pc[thread]+=4; iclk++; } if (cpu->v[thread]) cpu->pc[thread] = address; break; case MUL: /* MUL Immediate. */ case MAB: /* Multiply Accumulator by B. */ case 0x93: /* MUL Absolute. */ case 0x95: /* MUL Zero Matrix. */ if (opcode != MAB) { if (opcode == MUL) { address = cpu->pc[thread]; cpu->pc[thread]+=regsize; } if (opcode == 0x93) { address = (uint64_t)addr[cpu->pc[thread]] | (uint64_t)addr[cpu->pc[thread]+1] << 8 | (uint64_t)addr[cpu->pc[thread]+2] << 16 | (uint64_t)addr[cpu->pc[thread]+3] << 24 | (uint64_t)addr[cpu->pc[thread]+4] << 32 | (uint64_t)addr[cpu->pc[thread]+5] << 40 | (uint64_t)addr[cpu->pc[thread]+6] << 48 | (uint64_t)addr[cpu->pc[thread]+7] << 56; cpu->pc[thread]+=8; iclk++; } if (opcode == 0x95) { address = addr[cpu->pc[thread]] | addr[cpu->pc[thread]+1] << 8 | addr[cpu->pc[thread]+2] << 16 | addr[cpu->pc[thread]+3] << 24; cpu->pc[thread]+=4; iclk++; } value = addr[address]; if (regsize >= 2) { value += (uint64_t)addr[address+1] << 8; } if (regsize >= 4) { value += (uint64_t)addr[address+2] << 16; value += (uint64_t)addr[address+3] << 24; } if (regsize >= 8) { value += (uint64_t)addr[address+4] << 32; value += (uint64_t)addr[address+5] << 40; value += (uint64_t)addr[address+6] << 48; value += (uint64_t)addr[address+7] << 56; } } else { value = cpu->b[thread]; } sum = cpu->a[thread]*value+cpu->c[thread]; cpu->a[thread] = sum; cpu->z[thread] = (sum == 0); cpu->n[thread] = (sum >> 63); cpu->v[thread] = !((cpu->a[thread]^value) & 0x8000000000000000) && ((cpu->a[thread]^sum) & 0x8000000000000000); cpu->c[thread] = (!((cpu->a[thread]^sum) && (cpu->a[thread]^value)) && (cpu->a[thread] >= ((uint64_t)1 << 32) && value >= ((uint64_t)1 << 32))); (cpu->z[thread]) ? (cpu->ps |= (Z << 8*thread)) : (cpu->ps &= ~(Z << 8*thread)); (cpu->n[thread]) ? (cpu->ps |= (N << 8*thread)) : (cpu->ps &= ~(N << 8*thread)); (cpu->v[thread]) ? (cpu->ps |= (V << 8*thread)) : (cpu->ps &= ~(V << 8*thread)); (cpu->c[thread]) ? (cpu->ps |= (C << 8*thread)) : (cpu->ps &= ~(C << 8*thread)); break; case SEV: /* SEt oVerflow flag. */ cpu->v[thread] = 1; (cpu->ps |= (V << 8*thread)); break; case BVC: /* BVC Absolute. */ case 0xD4: /* BVC Zero Matrix. */ if (opcode == BVC) { address = (uint64_t)addr[cpu->pc[thread]] | (uint64_t)addr[cpu->pc[thread]+1] << 8 | (uint64_t)addr[cpu->pc[thread]+2] << 16 | (uint64_t)addr[cpu->pc[thread]+3] << 24 | (uint64_t)addr[cpu->pc[thread]+4] << 32 | (uint64_t)addr[cpu->pc[thread]+5] << 40 | (uint64_t)addr[cpu->pc[thread]+6] << 48 | (uint64_t)addr[cpu->pc[thread]+7] << 56; cpu->pc[thread]+=8; iclk++; } else { address = addr[cpu->pc[thread]] | addr[cpu->pc[thread]+1] << 8 | addr[cpu->pc[thread]+2] << 16 | addr[cpu->pc[thread]+3] << 24; cpu->pc[thread]+=4; iclk++; } if (!cpu->v[thread]) cpu->pc[thread] = address; break; case DIV: /* DIV Immediate. */ case DAB: /* Divide Accumulator by B. */ case 0xA3: /* DIV Absolute. */ case 0xA5: /* DIV Zero Matrix. */ if (opcode != DAB) { if (opcode == DIV) { address = cpu->pc[thread]; cpu->pc[thread]+=regsize; } if (opcode == 0xA3) { address = (uint64_t)addr[cpu->pc[thread]] | (uint64_t)addr[cpu->pc[thread]+1] << 8 | (uint64_t)addr[cpu->pc[thread]+2] << 16 | (uint64_t)addr[cpu->pc[thread]+3] << 24 | (uint64_t)addr[cpu->pc[thread]+4] << 32 | (uint64_t)addr[cpu->pc[thread]+5] << 40 | (uint64_t)addr[cpu->pc[thread]+6] << 48 | (uint64_t)addr[cpu->pc[thread]+7] << 56; cpu->pc[thread]+=8; iclk++; } if (opcode == 0xA5) { address = addr[cpu->pc[thread]] | addr[cpu->pc[thread]+1] << 8 | addr[cpu->pc[thread]+2] << 16 | addr[cpu->pc[thread]+3] << 24; cpu->pc[thread]+=4; iclk++; } value = addr[address]; if (regsize >= 2) { value += (uint64_t)addr[address+1] << 8; } if (regsize >= 4) { value += (uint64_t)addr[address+2] << 16; value += (uint64_t)addr[address+3] << 24; } if (regsize >= 8) { value += (uint64_t)addr[address+4] << 32; value += (uint64_t)addr[address+5] << 40; value += (uint64_t)addr[address+6] << 48; value += (uint64_t)addr[address+7] << 56; } cpu->b[thread] = cpu->a[thread] % value; } else { value = cpu->b[thread]; cpu->x[thread] = cpu->a[thread] % value; } sum = cpu->a[thread]/value; cpu->a[thread] = sum; cpu->z[thread] = (sum == 0); cpu->n[thread] = (sum >> 63); (cpu->z[thread]) ? (cpu->ps |= (Z << 8*thread)) : (cpu->ps &= ~(Z << 8*thread)); (cpu->n[thread]) ? (cpu->ps |= (N << 8*thread)) : (cpu->ps &= ~(N << 8*thread)); break; case CLV: /* CLear oVerflow flag. */ cpu->v[thread] = 0; (cpu->ps &= ~(V << 8*thread)); break; case RTS: /* ReTurn from Subroutine. */ for (uint8_t i = 0; i < 32; i+=8) { cpu->sp[thread]++; if (i) cpu->pc[thread] += addr[(cpu->stk_st[thread] << 16)+cpu->sp[thread]] << i; else cpu->pc[thread] = addr[(cpu->stk_st[thread] << 16)+cpu->sp[thread]]; } break; case CPB: /* CPB Immediate. */ case CMP: /* CMP Immediate. */ case CAB: /* Compare Accumulator, and B. */ case CPY: /* CPY Immediate. */ case CPX: /* CPX Immediate. */ case 0x2B: /* CPY Absolute. */ case 0x2D: /* CPX Absolute. */ case 0xB3: /* CMP Absolute. */ case 0xE6: /* CPB Absolute. */ case 0x3B: /* CPY Zero Matrix. */ case 0x3D: /* CPX Zero Matrix. */ case 0xB5: /* CMP Zero Matrix. */ case 0xF6: /* CPB Zero Matrix. */ case 0xE9: /* CMP Indirect. */ case 0xEA: /* CPY Indirect. */ case 0xEC: /* CPX Indirect. */ case 0xDF: /* CPB Indirect. */ case 0xEB: /* CMP Indexed Indirect. */ case 0xFA: /* CPY Indexed Indirect. */ case 0xEF: /* CPB Indexed Indirect. */ case 0xED: /* CMP Indirect Indexed. */ case 0xFC: /* CPX Indirect Indexed. */ case 0xFF: /* CPB Indirect Indexed. */ if (opcode != CAB) { if (opcode == CMP || opcode == CPY || opcode == CPX || opcode == CPB) { address = cpu->pc[thread]; cpu->pc[thread]+=regsize; } else if (opcode == 0xB3 || opcode == 0x2B || opcode == 0x2D) { address = (uint64_t)addr[cpu->pc[thread]] | (uint64_t)addr[cpu->pc[thread]+1] << 8 | (uint64_t)addr[cpu->pc[thread]+2] << 16 | (uint64_t)addr[cpu->pc[thread]+3] << 24 | (uint64_t)addr[cpu->pc[thread]+4] << 32 | (uint64_t)addr[cpu->pc[thread]+5] << 40 | (uint64_t)addr[cpu->pc[thread]+6] << 48 | (uint64_t)addr[cpu->pc[thread]+7] << 56; cpu->pc[thread]+=8; iclk++; } else { address = addr[cpu->pc[thread]] | addr[cpu->pc[thread]+1] << 8 | addr[cpu->pc[thread]+2] << 16 | addr[cpu->pc[thread]+3] << 24; if (opcode == 0xDF || opcode == 0xE9 || opcode == 0xEA || opcode == 0xEB || opcode == 0xEC || opcode == 0xED || opcode == 0xEF || opcode == 0xFA || opcode == 0xFC || opcode == 0xFF) { address = (uint64_t)addr[address] | (uint64_t)addr[address+1] << 8 | (uint64_t)addr[address+2] << 16 | (uint64_t)addr[address+3] << 24 | (uint64_t)addr[address+4] << 32 | (uint64_t)addr[address+5] << 40 | (uint64_t)addr[address+6] << 48 | (uint64_t)addr[address+7] << 56; if (opcode == 0xEB || opcode == 0xEF || opcode == 0xFA) address += cpu->x[thread]; if (opcode == 0xED || opcode == 0xFC || opcode == 0xFF) address += cpu->y[thread]; } cpu->pc[thread]+=4; iclk++; } value = (uint64_t)addr[address]; if (regsize >= 2) value += (uint64_t)addr[address+1] << 8; if (regsize >= 4) { value += (uint64_t)addr[address+2] << 16; value += (uint64_t)addr[address+3] << 24; } if (regsize >= 8) { value += (uint64_t)addr[address+4] << 32; value += (uint64_t)addr[address+5] << 40; value += (uint64_t)addr[address+6] << 48; value += (uint64_t)addr[address+7] << 56; } } else { value = cpu->b[thread]; } if (opcode == CMP || opcode == CAB || opcode == 0xE5 || opcode == 0xF5) sum = cpu->a[thread]-value; if (opcode == CPY || opcode == 0xE2 || opcode == 0xF2) sum = cpu->y[thread]-value; if (opcode == CPX || opcode == 0xE4 || opcode == 0xF4) sum = cpu->x[thread]-value; cpu->n[thread] = (sum & 0x8000000000000000) ? 1 : 0; cpu->z[thread] = (sum == 0) ? 1 : 0; cpu->c[thread] = (sum > value) ? 1 : 0; (cpu->z[thread]) ? (cpu->ps |= (Z << 8*thread)) : (cpu->ps &= ~(Z << 8*thread)); (cpu->n[thread]) ? (cpu->ps |= (N << 8*thread)) : (cpu->ps &= ~(N << 8*thread)); (cpu->c[thread]) ? (cpu->ps |= (C << 8*thread)) : (cpu->ps &= ~(C << 8*thread)); break; case ENT: /* ENd Thread. */ value = addr[address]; cpu->crt &= ~value; for (uint8_t i = 0; i < 7; i++) if ((value >> i) & 1) cpu->pc[i+1] = cpu->pc[0]+(i+1); break; case RTI: /* ReTurn from Interrupt routine. */ cpu->sp[thread]++; cpu->ps = addr[(cpu->stk_st[thread] << 16)+cpu->sp[thread]] << 8*thread; for (uint8_t i = 0; i < 64; i+=8) { cpu->sp[thread]++; if (i) cpu->pc[thread] += addr[(cpu->stk_st[thread] << 16)+cpu->sp[thread]] << i; else cpu->pc[thread] = addr[(cpu->stk_st[thread] << 16)+cpu->sp[thread]]; } break; case INC: /* INC Accumulator. */ case IAB: case INY: case INX: if (opcode == INC || opcode == IAB) { cpu->a[thread]+=1; if (opcode == IAB) cpu->b[thread]+=1; cpu->z[thread] = (cpu->a[thread] == 0); cpu->n[thread] = (cpu->a[thread] >> 63); } if (opcode == INY) { cpu->y[thread]+=1; cpu->z[thread] = (cpu->y[thread] == 0); cpu->n[thread] = (cpu->y[thread] >> 63); } if (opcode == INX) { cpu->x[thread]+=1; cpu->z[thread] = (cpu->x[thread] == 0); cpu->n[thread] = (cpu->x[thread] >> 63); } (cpu->z[thread]) ? (cpu->ps |= (Z << 8*thread)) : (cpu->ps &= ~(Z << 8*thread)); (cpu->n[thread]) ? (cpu->ps |= (N << 8*thread)) : (cpu->ps &= ~(N << 8*thread)); break; case 0x04: /* JMP Indirect. */ case 0x14: /* JMP Indexed Indirect. */ case 0x24: /* JMP Indirect Indexed. */ case 0xD0: /* JMP Zero Matrix. */ address = (uint32_t)addr[cpu->pc[thread]] |(uint32_t)addr[cpu->pc[thread]+1] << 8 |(uint32_t)addr[cpu->pc[thread]+2] << 16 |(uint32_t)addr[cpu->pc[thread]+3] << 24; if (opcode == 0x04 || opcode == 0x14 || opcode == 0x24) { address = (uint64_t)addr[address] | (uint64_t)addr[address+1] << 8 | (uint64_t)addr[address+2] << 16 | (uint64_t)addr[address+3] << 24 | (uint64_t)addr[address+4] << 32 | (uint64_t)addr[address+5] << 40 | (uint64_t)addr[address+6] << 48 | (uint64_t)addr[address+7] << 56; if (opcode == 0x14) address += cpu->x[thread]; if (opcode == 0x24) address += cpu->y[thread]; } cpu->pc[thread]+=4; iclk++; cpu->pc[thread] = address; break; case DEC: /* DEC Accumulator. */ case DBA: case DEY: case DEX: if (opcode == DEC || opcode == DBA) { cpu->a[thread]-=1; if (opcode == DBA) cpu->b[thread]-=1; cpu->z[thread] = (cpu->a[thread] == 0); cpu->n[thread] = (cpu->a[thread] >> 63); } if (opcode == DEY) { cpu->y[thread]-=1; cpu->z[thread] = (cpu->y[thread] == 0); cpu->n[thread] = (cpu->y[thread] >> 63); } if (opcode == DEX) { cpu->x[thread]-=1; cpu->z[thread] = (cpu->x[thread] == 0); cpu->n[thread] = (cpu->x[thread] >> 63); } (cpu->z[thread]) ? (cpu->ps |= (Z << 8*thread)) : (cpu->ps &= ~(Z << 8*thread)); (cpu->n[thread]) ? (cpu->ps |= (N << 8*thread)) : (cpu->ps &= ~(N << 8*thread)); break; case JSL: /* Jump to Subroutine Long. */ address = (uint64_t)addr[cpu->pc[thread]] | (uint64_t)addr[cpu->pc[thread]+1] << 8 | (uint64_t)addr[cpu->pc[thread]+2] << 16 | (uint64_t)addr[cpu->pc[thread]+3] << 24 | (uint64_t)addr[cpu->pc[thread]+4] << 32 | (uint64_t)addr[cpu->pc[thread]+5] << 40 | (uint64_t)addr[cpu->pc[thread]+6] << 48 | (uint64_t)addr[cpu->pc[thread]+7] << 56; cpu->pc[thread]+=8; for (int8_t i = 56; i >= 0; i-=8) { if (i) addr[(cpu->stk_st[thread] << 16)+cpu->sp[thread]] = (uint64_t)cpu->pc[thread] >> i; else addr[(cpu->stk_st[thread] << 16)+cpu->sp[thread]] = (uint64_t)cpu->pc[thread] & 0xFF; cpu->sp[thread]--; } cpu->pc[thread] = address; break; case 0xC3: /* INC Absolute. */ case 0xC5: /* INC Zero Matrix. */ if (opcode == 0xC3) { address = (uint64_t)addr[cpu->pc[thread]] | (uint64_t)addr[cpu->pc[thread]+1] << 8 | (uint64_t)addr[cpu->pc[thread]+2] << 16 | (uint64_t)addr[cpu->pc[thread]+3] << 24 | (uint64_t)addr[cpu->pc[thread]+4] << 32 | (uint64_t)addr[cpu->pc[thread]+5] << 40 | (uint64_t)addr[cpu->pc[thread]+6] << 48 | (uint64_t)addr[cpu->pc[thread]+7] << 56; cpu->pc[thread]+=8; iclk++; } if (opcode == 0xC5) { address = addr[cpu->pc[thread]] | addr[cpu->pc[thread]+1] << 8 | addr[cpu->pc[thread]+2] << 16 | addr[cpu->pc[thread]+3] << 24; cpu->pc[thread]+=4; iclk++; } addr[address]++; break; case NOP: /* No OPeration. */ break; case RTL: /* ReTurn from subroutine Long. */ for (uint8_t i = 0; i < 64; i+=8) { cpu->sp[thread]++; if (i < 56) cpu->pc[thread] = addr[(cpu->stk_st[thread] << 16)+cpu->sp[thread]] << i; else if (i == 56) cpu->pc[thread] = addr[(cpu->stk_st[thread] << 16)+cpu->sp[thread]] << i + 1; else cpu->pc[thread] = addr[(cpu->stk_st[thread] << 16)+cpu->sp[thread]]; } break; case 0xD3: /* DEC Absolute. */ case 0xD5: /* DEC Zero Matrix. */ if (opcode == 0xD3) { address = (uint64_t)addr[cpu->pc[thread]] | (uint64_t)addr[cpu->pc[thread]+1] << 8 | (uint64_t)addr[cpu->pc[thread]+2] << 16 | (uint64_t)addr[cpu->pc[thread]+3] << 24 | (uint64_t)addr[cpu->pc[thread]+4] << 32 | (uint64_t)addr[cpu->pc[thread]+5] << 40 | (uint64_t)addr[cpu->pc[thread]+6] << 48 | (uint64_t)addr[cpu->pc[thread]+7] << 56; cpu->pc[thread]+=8; iclk++; } if (opcode == 0xD5) { address = addr[cpu->pc[thread]] | addr[cpu->pc[thread]+1] << 8 | addr[cpu->pc[thread]+2] << 16 | addr[cpu->pc[thread]+3] << 24; cpu->pc[thread]+=4; iclk++; } addr[address]--; break; case BRK: /* BReaK. */ for (int8_t i = 56; i >= 0; i-=8) { if (i) addr[(cpu->stk_st[thread] << 16)+cpu->sp[thread]] = (uint64_t)cpu->pc[thread]-1 >> i; else addr[(cpu->stk_st[thread] << 16)+cpu->sp[thread]] = (uint64_t)cpu->pc[thread]-1 & 0xFF; cpu->sp[thread]--; } addr[(cpu->stk_st[thread] << 16)+cpu->sp[thread]] = (uint64_t)cpu->ps >> 8*thread; cpu->sp[thread]--; cpu->i[thread] = 1; (cpu->i[thread]) ? (cpu->ps |= (I << 8*thread)) : (cpu->ps &= ~(I << 8*thread)); cpu->pc[thread] = (uint64_t)addr[0xFFE0] | (uint64_t)addr[0xFFE1] << 8 | (uint64_t)addr[0xFFE2] << 16 | (uint64_t)addr[0xFFE3] << 24 | (uint64_t)addr[0xFFE4] << 32 | (uint64_t)addr[0xFFE5] << 40 | (uint64_t)addr[0xFFE6] << 48 | (uint64_t)addr[0xFFE7] << 56; break; case WAI: /* WAit for Interrupt. */ wai = 1; pthread_mutex_lock(&main_mutex); pthread_cond_signal(&main_cond); pthread_mutex_unlock(&main_mutex); pthread_mutex_lock(&mutex); pthread_cond_wait(&cond, &mutex); pthread_mutex_unlock(&mutex); break; default: break; } ins++; usleep(100000); #if debug && !bench #if keypoll pthread_mutex_lock(&mutex); #endif mvwprintw(scr, getmaxy(scr)-lines, 0, "Operand: $%llx" ", $%04llx: $%02x, $%04llx: $%02x" ", $1000: $%02x, $1001: $%02x " , value , RX_ADDR, addr[RX_ADDR], TX_ADDR, addr[TX_ADDR] , addr[0x1000], addr[0x1001]); mvwprintw(scr, (24*thread)+1, 0, "Instructions executed: %llu, Clock cycles: %llu\r", ins, iclk); wrefresh(scr); #if keypoll pthread_mutex_unlock(&mutex); #endif #endif #if bench if (ins >= BENCH_INST) { end = 1; pthread_mutex_lock(&mutex); threads_done++; inst[thread] = ins; clk[thread] = iclk; pthread_cond_signal(&main_cond); pthread_mutex_unlock(&mutex); gettimeofday(&en[thread], 0); } #endif } free(s); } int main(int argc, char **argv) { struct suxthr thr[THREADS]; char *tmp = malloc(2048); ibcount = 0; addr = malloc(0x04000000); inss = 0; int v = 0; if (argc != 2) { if (asmmon("stdin") == 2) return 0; } else { if (asmmon(argv[1]) == 2) return 0; } sprintf(tmp, "\033[2J\033[H"); fwrite(tmp, sizeof(char), strlen(tmp), stdout); fflush(stdout); if(!scr) scr = initscr(); nodelay(stdscr, 0); crmode(); noecho(); nl(); curs_set(1); werase(scr); scrollok(scr, 1); wrefresh(scr); start_color(); use_default_colors(); init_pair(1, COLOR_WHITE, -1); attron(COLOR_PAIR(1) | A_BOLD); wmove(scr, 0, 0); for (int i = 0; i < THREADS; i++) { thr[i].sx.sp[i] = 0xFFFF; thr[i].sx.stk_st[i] = i+1; if (i) { thr[i].sx.a[i] = 0; thr[i].sx.x[i] = 0; thr[i].sx.y[i] = 0; thr[i].sx.pc[i] = (uint64_t)addr[0xFF50+(8*(i-1))] | (uint64_t)addr[0xFF51+(8*(i-1))] << 8 | (uint64_t)addr[0xFF52+(8*(i-1))] << 16 | (uint64_t)addr[0xFF53+(8*(i-1))] << 24 | (uint64_t)addr[0xFF54+(8*(i-1))] << 32 | (uint64_t)addr[0xFF55+(8*(i-1))] << 40 | (uint64_t)addr[0xFF56+(8*(i-1))] << 48 | (uint64_t)addr[0xFF57+(8*(i-1))] << 56; } else { thr[i].sx.a[i] = 0; thr[i].sx.x[i] = 0; thr[i].sx.y[i] = 0; thr[i].sx.pc[i] = (uint64_t)addr[0xFFC0] | (uint64_t)addr[0xFFC1] << 8 | (uint64_t)addr[0xFFC2] << 16 | (uint64_t)addr[0xFFC3] << 24 | (uint64_t)addr[0xFFC4] << 32 | (uint64_t)addr[0xFFC5] << 40 | (uint64_t)addr[0xFFC6] << 48 | (uint64_t)addr[0xFFC7] << 56; } thr[i].th = i; } pthread_t therads[THREADS]; int result; for (int i = 0; i < THREADS; i++) { inst[i] = 0; } for (int i = 0; i < THREADS; i++) { result = pthread_create(&therads[i], NULL, run, &thr[i]); assert(!result); } int c = 0; werase(scr); while (threads_done < THREADS) { int x, y, i = 0; #if !bench if ((c != EOF && c !=-1)) { pthread_mutex_lock(&main_mutex); curs_set(0); pthread_cond_wait(&main_cond, &main_mutex); pthread_mutex_unlock(&main_mutex); curs_set(1); c = 0; addr[CTRL_ADDR] = 0; } #if keypoll pthread_mutex_lock(&mutex); #endif getyx(scr, y, x); c = wgetch(scr); switch (c) { case ERR: addr[CTRL_ADDR] = 0; wmove(scr, getmaxy(scr)-1, 0); wprintw(scr, "c: %i, x: %i, y: %i, i: %i.", c, x, y, i++); wmove(scr, y, x); wrefresh(scr); break; default: addr[RX_ADDR] = (uint8_t)c; addr[CTRL_ADDR] = 1; #if !keypoll pthread_mutex_lock(&mutex); pthread_cond_signal(&cond); pthread_mutex_unlock(&mutex); #endif break; } #if keypoll pthread_mutex_unlock(&mutex); #endif #else pthread_mutex_lock(&main_mutex); pthread_cond_wait(&main_cond, &main_mutex); pthread_mutex_unlock(&main_mutex); #endif } #if bench if (threads_done == THREADS) { #if en_nc scr = NULL; endwin(); #endif double tm_sec, tm_usec, tm[THREADS], ttm; double clkspd; double mhz; double ips[THREADS]; double ipst; for (int i = 0; i < THREADS; i++) { tm_sec = (en[i].tv_sec - str[i].tv_sec); tm_usec = (en[i].tv_usec-str[i].tv_usec); tm[i] = (tm_sec*1000000)+(tm_usec); ips[i] = inst[i]/tm[i]; if (i) { inss += inst[i]; ttm += tm[i]; ipst += ips[i]; tclk += clk[i]; } else { inss = inst[i]; ttm = tm[i]; ipst = ips[i]; tclk = clk[i]; } clkspd = (tm[i]/1000000)*1000000/clk[i]; mhz = 1000000.0/clkspd/1000000; sprintf(tmp, "Instructions executed for thread %i: %llu, Instructions per Second for thread %i in MIPS: %f, tm: %f\n", i, inst[i], i, ips[i], tm[i]/1000000); fwrite(tmp, sizeof(char), strlen(tmp), stdout); } clkspd = (ttm/1000000)*1000000/tclk; mhz = 1000000.0/clkspd/1000000; sprintf(tmp, "Total Instructions executed: %llu, Total Instructions per Second in MIPS: %f, Clock cycles: %llu, Clock Speed in MHz: %f, tm: %f\n", inss, ipst, tclk, mhz, ttm/1000000); fwrite(tmp, sizeof(char), strlen(tmp), stdout); fflush(stdout); free(tmp); } #endif free(addr); return 0; }