/* @(#)e_fmod.c 1.2 95/01/04 */ /* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */ /* * __ieee754_fmod(x,y) * Return x mod y in exact arithmetic * Method: shift and subtract */ #include "fdlibm.h" #ifdef __STDC__ static const double one = 1.0, Zero[] = { 0.0, -0.0, }; #else static double one = 1.0, Zero[] = { 0.0, -0.0, }; #endif #ifdef __STDC__ double __ieee754_fmod(double x, double y) #else double __ieee754_fmod(x, y) double x, y; #endif { _INT32 n, hx, hy, hz, ix, iy, sx, i; _UINT32 lx, ly, lz; hx = __HI(x); /* high word of x */ lx = __LO(x); /* low word of x */ hy = __HI(y); /* high word of y */ ly = __LO(y); /* low word of y */ sx = hx & 0x80000000; /* sign of x */ hx ^= sx; /* |x| */ hy &= 0x7fffffff; /* |y| */ /* purge off exception values */ if ((hy | ly) == 0 || (hx >= 0x7ff00000) || /* y=0,or x not finite */ ((hy | ((ly | -ly) >> 31)) > 0x7ff00000)) /* or y is NaN */ return (x * y) / (x * y); if (hx <= hy) { if ((hx < hy) || (lx < ly)) return x; /* |x|<|y| return x */ if (lx == ly) return Zero[(_UINT32)sx >> 31]; /* |x|=|y| return x*0*/ } /* determine ix = ilogb(x) */ if (hx < 0x00100000) { /* subnormal x */ if (hx == 0) { for (ix = -1043, i = lx; i > 0; i <<= 1) ix -= 1; } else { for (ix = -1022, i = (hx << 11); i > 0; i <<= 1) ix -= 1; } } else ix = (hx >> 20) - 1023; /* determine iy = ilogb(y) */ if (hy < 0x00100000) { /* subnormal y */ if (hy == 0) { for (iy = -1043, i = ly; i > 0; i <<= 1) iy -= 1; } else { for (iy = -1022, i = (hy << 11); i > 0; i <<= 1) iy -= 1; } } else iy = (hy >> 20) - 1023; /* set up {hx,lx}, {hy,ly} and align y to x */ if (ix >= -1022) hx = 0x00100000 | (0x000fffff & hx); else { /* subnormal x, shift x to normal */ n = -1022 - ix; if (n <= 31) { hx = (hx << n) | (lx >> (32 - n)); lx <<= n; } else { hx = lx << (n - 32); lx = 0; } } if (iy >= -1022) hy = 0x00100000 | (0x000fffff & hy); else { /* subnormal y, shift y to normal */ n = -1022 - iy; if (n <= 31) { hy = (hy << n) | (ly >> (32 - n)); ly <<= n; } else { hy = ly << (n - 32); ly = 0; } } /* fix point fmod */ n = ix - iy; while (n--) { hz = hx - hy; lz = lx - ly; if (lx < ly) hz -= 1; if (hz < 0) { hx = hx + hx + (lx >> 31); lx = lx + lx; } else { if ((hz | lz) == 0) /* return sign(x)*0 */ return Zero[(_UINT32)sx >> 31]; hx = hz + hz + (lz >> 31); lx = lz + lz; } } hz = hx - hy; lz = lx - ly; if (lx < ly) hz -= 1; if (hz >= 0) { hx = hz; lx = lz; } /* convert back to floating value and restore the sign */ if ((hx | lx) == 0) /* return sign(x)*0 */ return Zero[(_UINT32)sx >> 31]; while (hx < 0x00100000) { /* normalize x */ hx = hx + hx + (lx >> 31); lx = lx + lx; iy -= 1; } if (iy >= -1022) { /* normalize output */ hx = ((hx - 0x00100000) | ((iy + 1023) << 20)); __HI(x) = hx | sx; __LO(x) = lx; } else { /* subnormal output */ n = -1022 - iy; if (n <= 20) { lx = (lx >> n) | ((_UINT32)hx << (32 - n)); hx >>= n; } else if (n <= 31) { lx = (hx << (32 - n)) | (lx >> n); hx = sx; } else { lx = hx >> (n - 32); hx = sx; } __HI(x) = hx | sx; __LO(x) = lx; x *= one; /* create necessary signal */ } return x; /* exact output */ }