summaryrefslogtreecommitdiff
path: root/sux.h
diff options
context:
space:
mode:
authormrb0nk500 <b0nk@b0nk.xyz>2020-11-20 15:10:24 -0500
committermrb0nk500 <b0nk@b0nk.xyz>2020-11-20 15:10:24 -0500
commit83ce1151ee1f06ae6b1c5c1018cc2489494e5ea4 (patch)
treeba4edade46c57ec5119d01ab8a7ad9f7943c6804 /sux.h
parentdc7ebb9d424bb39d59f09b8498746beb871c46f4 (diff)
- Implemented support for Sux's base extension.
This is the biggest milestone I've reached for this project, since the base extension changes alot about what Sux can do by default, and now makes it a viable instruction set for modern day use, when compared with other instruction sets.
Diffstat (limited to 'sux.h')
-rw-r--r--sux.h804
1 files changed, 745 insertions, 59 deletions
diff --git a/sux.h b/sux.h
index f719b03..9d7bcb3 100644
--- a/sux.h
+++ b/sux.h
@@ -44,7 +44,7 @@ extern pthread_cond_t main_cond;
#if debug
extern void print_regs(struct sux *cpu, uint8_t lines, uint8_t thread);
-extern void disasm(struct sux *cpu, uint8_t lines, uint8_t opcode, uint8_t prefix, uint8_t thread);
+extern void disasm(struct sux *cpu, uint8_t lines, uint8_t opcode, uint8_t prefix, uint8_t ext_prefix, uint8_t prefix2, uint8_t thread);
#endif
/*#define KEYBUF_SIZE 0x40
@@ -59,6 +59,11 @@ static inline uint8_t get_addrsize(uint8_t prefix, uint8_t addrmode) {
uint8_t id = (prefix & 0x0C) >> 2;
switch (addrmode) {
case ZM:
+ case ZMX:
+ case ZMY:
+ case IND:
+ case INDX:
+ case INDY:
switch (id) {
case 2: return 5;
case 3: return 3;
@@ -67,6 +72,11 @@ static inline uint8_t get_addrsize(uint8_t prefix, uint8_t addrmode) {
}
break;
case ABS:
+ case ABSX:
+ case ABSY:
+ case AIND:
+ case AINDX:
+ case AINDY:
switch (id) {
case 3: return 7;
case 2: return 6;
@@ -75,7 +85,7 @@ static inline uint8_t get_addrsize(uint8_t prefix, uint8_t addrmode) {
}
break;
}
- return 0;
+ return 0xFF;
}
static inline uint8_t isrw(uint8_t opcode) {
@@ -269,37 +279,26 @@ static inline uint64_t read_addr(struct sux *cpu, uint8_t prefix, uint8_t inc_cl
return address;
}
-static inline uint64_t zmx_addr(struct sux *cpu, uint8_t prefix, uint8_t inc_clk, uint8_t inc_pc) {
+static inline uint64_t idx_addr(struct sux *cpu, uint8_t prefix, uint8_t inc_clk, uint8_t type, uint8_t inc_pc, uint64_t idx_reg) {
#if getclk
cpu->clk += inc_clk;
#endif
- return read_addr(cpu, prefix, inc_clk, ZM, inc_pc) + cpu->x;
+ return read_addr(cpu, prefix, inc_clk, type, inc_pc) + idx_reg;
}
-static inline uint64_t zmy_addr(struct sux *cpu, uint8_t prefix, uint8_t inc_clk, uint8_t inc_pc) {
- #if getclk
- cpu->clk += inc_clk;
- #endif
- return read_addr(cpu, prefix, inc_clk, ZM, inc_pc) + cpu->y;
-}
-
-
-static inline uint64_t ind_addr(struct sux *cpu, uint8_t prefix, uint8_t inc_clk, uint8_t inc_pc) {
- return read_value(cpu, 0, read_addr(cpu, prefix, inc_clk, ZM, inc_pc), 7, inc_clk, 0);
+static inline uint64_t ind_addr(struct sux *cpu, uint8_t prefix, uint8_t inc_clk, uint8_t type, uint8_t inc_pc) {
+ return read_value(cpu, 0, read_addr(cpu, prefix, inc_clk, type, inc_pc), 7, inc_clk, 0);
}
-static inline uint64_t indx_addr(struct sux *cpu, uint8_t prefix, uint8_t inc_clk, uint8_t inc_pc) {
+static inline uint64_t ind_idx_addr(struct sux *cpu, uint8_t prefix, uint8_t inc_clk, uint8_t type, uint8_t inc_pc, uint64_t idx_reg, uint8_t pre_idx) {
#if getclk
cpu->clk += inc_clk;
#endif
- return read_value(cpu, 0, read_addr(cpu, prefix, inc_clk, ZM, inc_pc)+cpu->x, 7, inc_clk, 0);
-}
-
-static inline uint64_t indy_addr(struct sux *cpu, uint8_t prefix, uint8_t inc_clk, uint8_t inc_pc) {
- #if getclk
- cpu->clk += inc_clk;
- #endif
- return ind_addr(cpu, prefix, inc_clk, inc_pc) + cpu->y;
+ if (pre_idx) {
+ return read_value(cpu, 0, read_addr(cpu, prefix, inc_clk, type, inc_pc)+idx_reg, 7, inc_clk, 0);
+ } else {
+ return ind_addr(cpu, prefix, inc_clk, type, inc_pc) + idx_reg;
+ }
}
static inline uint64_t rel_addr(struct sux *cpu, uint8_t prefix, uint8_t inc_clk, uint8_t inc_pc) {
@@ -321,12 +320,21 @@ static inline uint64_t rel_addr(struct sux *cpu, uint8_t prefix, uint8_t inc_clk
}
}
-static inline uint64_t get_addr(struct sux *cpu, uint8_t opcode, uint8_t prefix, uint8_t inc_pc, uint8_t inc_clk, uint8_t thread) {
+static inline uint64_t get_addr(struct sux *cpu, uint8_t opcode, uint8_t prefix, uint8_t ext_prefix, uint8_t inc_pc, uint8_t inc_clk, uint8_t thread) {
uint64_t address = 0;
- switch (optype[opcode]) {
+ uint8_t type;
+ if ((ext_prefix & 0xD) == 0xD) {
+ switch (ext_prefix >> 4) {
+ case 0x0: type = ext_optype[opcode]; break;
+ }
+ } else {
+ type = optype[opcode];
+ }
+ switch (type) {
case BREG:
case IMPL:
break;
+ case EIND: address = cpu->e; break;
case IMM:
address = imm_addr(cpu);
switch (opcode) {
@@ -335,34 +343,41 @@ static inline uint64_t get_addr(struct sux *cpu, uint8_t opcode, uint8_t prefix,
case ROL_IMM:
case ROR_IMM:
case ASR_IMM:
- if (inc_pc) {
- ++cpu->pc;
+ if ((ext_prefix & 0xD) != 0xD) {
+ if (inc_pc) {
+ ++cpu->pc;
+ }
+ break;
}
- break;
+ /* Falls Through. */
default:
if (inc_pc) {
cpu->pc+=(1 << ((prefix >> 4) & 3));
}
- /* Falls Through. */
- case TXS_IMM: break;
+ break;
}
break;
- case ZM : return read_addr(cpu, prefix, inc_clk, ZM, inc_pc);
- case ABS : return read_addr(cpu, prefix, inc_clk, ABS, inc_pc);
- case ZMX : return zmx_addr(cpu, prefix, inc_clk, /**/ inc_pc);
- case ZMY : return zmy_addr(cpu, prefix, inc_clk, /**/ inc_pc);
- case IND : return ind_addr(cpu, prefix, inc_clk, /**/ inc_pc);
- case INDX: return indx_addr(cpu, prefix, inc_clk, /**/ inc_pc);
- case INDY: return indy_addr(cpu, prefix, inc_clk, /**/ inc_pc);
- case REL : return rel_addr(cpu, prefix, inc_clk, /**/ inc_pc);
+ case ZM : return read_addr(cpu, prefix, inc_clk, ZM, inc_pc);
+ case ZMX : return idx_addr(cpu, prefix, inc_clk, ZM, inc_pc, cpu->x);
+ case ZMY : return idx_addr(cpu, prefix, inc_clk, ZM, inc_pc, cpu->y);
+ case IND : return ind_addr(cpu, prefix, inc_clk, ZM, inc_pc);
+ case INDX : return ind_idx_addr(cpu, prefix, inc_clk, ZM, inc_pc, cpu->x, 1);
+ case INDY : return ind_idx_addr(cpu, prefix, inc_clk, ZM, inc_pc, cpu->y, 0);
+ case ABS : return read_addr(cpu, prefix, inc_clk, ABS, inc_pc);
+ case ABSX : return idx_addr(cpu, prefix, inc_clk, ABS, inc_pc, cpu->x);
+ case ABSY : return idx_addr(cpu, prefix, inc_clk, ABS, inc_pc, cpu->y);
+ case AIND : return ind_addr(cpu, prefix, inc_clk, ABS, inc_pc);
+ case AINDX: return ind_idx_addr(cpu, prefix, inc_clk, ABS, inc_pc, cpu->x, 1);
+ case AINDY: return ind_idx_addr(cpu, prefix, inc_clk, ABS, inc_pc, cpu->y, 0);
+ case REL : return rel_addr(cpu, prefix, inc_clk, /**/ inc_pc);
}
return address;
}
-static inline uint64_t adc(struct sux *cpu, uint64_t reg, uint64_t value, uint8_t thread) {
- uint64_t sum = reg+value+getflag(C);
+static inline uint64_t adc(struct sux *cpu, uint64_t reg, uint64_t value, uint8_t carry, uint8_t thread) {
+ uint64_t sum = reg+value+carry;
setflag(sum == 0, Z);
setflag((sum >> 63), N);
setflag(((reg^value) >> 63) && ((reg^sum) >> 63), V);
@@ -406,55 +421,65 @@ static inline uint64_t xor(struct sux *cpu, uint64_t reg, uint64_t value, uint8_
return reg;
}
-static inline uint64_t lsl(struct sux *cpu, uint64_t reg, uint64_t value, uint8_t thread) {
- uint64_t sum = (value < 64) ? reg << value : 0;
+static inline uint64_t lsl(struct sux *cpu, uint64_t reg, uint64_t value, uint8_t size, uint8_t thread) {
+ size = (size > 8) ? 8 : size;
+ uint8_t msb = size*8;
+ uint64_t sum = (value < msb) ? reg << value : 0;
setflag(sum == 0, Z);
- setflag(sum >> 63, N);
- setflag(reg >> (64-value), C);
+ setflag(sum >> (msb-1), N);
+ setflag(reg >> (msb-value), C);
return sum;
}
-static inline uint64_t lsr(struct sux *cpu, uint64_t reg, uint64_t value, uint8_t thread) {
- uint64_t sum = (value < 64) ? reg >> value : 0;
+static inline uint64_t lsr(struct sux *cpu, uint64_t reg, uint64_t value, uint8_t size, uint8_t thread) {
+ size = (size > 8) ? 8 : size;
+ uint8_t msb = size*8;
+ uint64_t sum = (value < msb) ? reg >> value : 0;
setflag(sum == 0, Z);
- setflag(sum >> 63, N);
+ setflag(sum >> (msb-1), N);
setflag(reg & 1, C);
return sum;
}
-static inline uint64_t asr(struct sux *cpu, uint64_t reg, uint64_t value, uint8_t thread) {
- uint8_t sign = reg >> 63;
- uint64_t sum = (value < 64) ? (reg >> value) | ((uint64_t)sign << 63) : 0;
+static inline uint64_t asr(struct sux *cpu, uint64_t reg, uint64_t value, uint8_t size, uint8_t thread) {
+ size = (size > 8) ? 8 : size;
+ uint8_t msb = size*8;
+ uint8_t sign = reg >> (msb-1);
+ uint64_t sum = (value < msb) ? (reg >> value) | ((uint64_t)sign << (msb-1)) : 0;
setflag(sum == 0, Z);
- setflag(sum >> 63, N);
+ setflag(sum >> (msb-1), N);
setflag(reg & 1, C);
return sum;
}
-static inline uint64_t rol(struct sux *cpu, uint64_t reg, uint64_t value, uint8_t thread) {
+static inline uint64_t rol(struct sux *cpu, uint64_t reg, uint64_t value, uint8_t size, uint8_t thread) {
+ size = (size > 8) ? 8 : size;
+ uint8_t msb = size*8;
uint64_t sum;
uint64_t c = getflag(C);
switch (value & 0x3F) {
case 0 : return reg;
case 1 : sum = (reg << 1) | (c & 1); break;
- default: sum = (reg << value) | (c << (value-1)) | (reg >> (65-value)); break;
+ default: sum = (reg << value) | (c << (value-1)) | (reg >> ((msb+1)-value)); break;
}
setflag(sum == 0, Z);
- setflag(sum >> 63, N);
- setflag((reg >> (64-value)) & 1, C);
+ setflag(sum >> (msb-1), N);
+ setflag((reg >> (msb-value)) & 1, C);
return sum;
}
-static inline uint64_t ror(struct sux *cpu, uint64_t reg, uint64_t value, uint8_t thread) {
+static inline uint64_t ror(struct sux *cpu, uint64_t reg, uint64_t value, uint8_t size, uint8_t thread) {
+ size = (size > 8) ? 8 : size;
+ uint8_t msb = size*8;
uint64_t sum;
uint64_t c = getflag(C);
switch (value & 0x3F) {
case 0 : return reg;
- case 1 : sum = (reg >> 1) | (c << 63); break;
- default: sum = (reg >> value) | (c << (64-value)) | (reg << (65-value)); break;
+ case 1 : sum = (reg >> 1) | (c << (msb-1)); break;
+ default: sum = (reg >> value) | (c << (msb-value)) | (reg << ((msb+1)-value)); break;
}
setflag(sum == 0, Z);
- setflag(sum >> 63, N);
+ setflag(sum >> (msb-1), N);
setflag((reg >> (value-1)) & 1, C);
return sum;
}
@@ -474,6 +499,7 @@ static inline uint64_t divd(struct sux *cpu, uint64_t reg, uint64_t value, uint6
setflag((sum >> 63), N);
return sum;
}
+
static inline void cmp(struct sux *cpu, uint64_t value, uint64_t reg, uint8_t thread) {
uint64_t sum = reg-value;
setflag(sum >> 63, N);
@@ -490,6 +516,40 @@ static inline uint64_t idr(struct sux *cpu, uint64_t reg, uint8_t inc, uint8_t t
return reg;
}
+static inline uint64_t lbcnt(struct sux *cpu, uint64_t value, uint8_t bit, uint8_t size, uint8_t thread) {
+ size = (size > 8) ? 8 : size;
+ uint8_t msb = size*8;
+ if ((!bit && !value) || (bit && value == -1)) {
+ return msb;
+ }
+ uint64_t j = 0;
+ for (int i = msb-1; ((value >> i) & 1) == bit; i--, j++);
+ setflag(j == 0, Z);
+ return j;
+}
+
+static inline void bit_test(struct sux *cpu, uint64_t reg, uint64_t value, uint8_t thread) {
+ setflag((value >> 7) & 1, N);
+ setflag((value >> 6) & 1, V);
+ setflag((value & reg) == 0, Z);
+}
+
+static inline uint64_t swap(struct sux *cpu, uint64_t reg, uint8_t size, uint8_t thread) {
+ size = (size > 7) ? 7 : size;
+ uint8_t half = ((size-1)*8) >> 1;
+ uint64_t mask = (-(uint64_t)1 >> ((7 - size) * 8));
+ uint64_t lo_mask = mask >> half;
+ uint64_t hi_mask = (mask << half) & mask;
+ return (((reg >> half) & lo_mask) | ((reg << half) & hi_mask));
+
+}
+
+static inline uint64_t popcnt(struct sux *cpu, uint64_t value, uint8_t thread) {
+ uint64_t count = 0;
+ for (; value; count++, value &= value - 1);
+ return count;
+}
+
/* Increment, or Decrement memory. */
static inline void idm(struct sux *cpu, uint64_t address, uint8_t prefix, uint8_t inc, uint8_t thread) {
uint8_t size = (1 << ((prefix >> 4) & 3))-1;
@@ -508,6 +568,47 @@ static inline void idm(struct sux *cpu, uint64_t address, uint8_t prefix, uint8_
write_value(cpu, value, address, size, 1, 1);
}
+static inline void bitshft_mem(struct sux *cpu, uint8_t shft_type, uint64_t shft_cnt, uint64_t address, uint8_t prefix, uint8_t thread) {
+ uint8_t size = (1 << ((prefix >> 4) & 3))-1;
+ uint64_t value = read_value(cpu, 0, address, size, 1, 0);
+ switch (shft_type) {
+ case 0: value = lsl(cpu, value, shft_cnt, size+1, thread); break;
+ case 1: value = lsr(cpu, value, shft_cnt, size+1, thread); break;
+ case 2: value = rol(cpu, value, shft_cnt, size+1, thread); break;
+ case 3: value = ror(cpu, value, shft_cnt, size+1, thread); break;
+ case 4: value = asr(cpu, value, shft_cnt, size+1, thread); break;
+ }
+ write_value(cpu, value, address, size, 1, 1);
+}
+
+static inline void not_mem(struct sux *cpu, uint64_t address, uint8_t prefix, uint8_t thread) {
+ uint8_t size = (1 << ((prefix >> 4) & 3))-1;
+ write_value(cpu, ~read_value(cpu, 0, address, size, 1, 0), address, size, 1, 1);
+}
+
+static inline void lbcnt_mem(struct sux *cpu, uint64_t address, uint8_t bit, uint8_t size, uint8_t thread) {
+ uint64_t value = read_value(cpu, 0, address, size, 1, 0);
+ write_value(cpu, lbcnt(cpu, value, bit, size, thread), address, size, 1, 1);
+}
+
+static inline void swap_mem(struct sux *cpu, uint64_t address, uint8_t size, uint8_t thread) {
+ uint64_t value = read_value(cpu, 0, address, size, 1, 0);
+ write_value(cpu, swap(cpu, value, size, thread), address, size, 1, 1);
+}
+
+static inline uint64_t mem_move(struct sux *cpu, uint64_t n, uint64_t dst, uint64_t src, uint8_t rep, uint8_t size, uint8_t thread) {
+ if (!rep) {
+ uint64_t value = read_value(cpu, 0, src, size, 1, 1);
+ write_value(cpu, value, dst, size, 1, 1);
+ return n-(size+1);
+ } else {
+ if (src < mem_size && dst < mem_size) {
+ memcopy(addr+dst, addr+src, n*(size+1));
+ }
+ return 0;
+ }
+}
+
static inline uint64_t load(struct sux *cpu, uint64_t reg, uint64_t address, uint8_t size, uint8_t thread) {
uint64_t value = read_value(cpu, reg, address, size, 1, 1);
setflag(value == 0, Z);
@@ -519,3 +620,588 @@ static inline void store(struct sux *cpu, uint64_t address, uint64_t reg, uint8_
uint8_t size = (1 << ((prefix >> 4) & 3))-1;
write_value(cpu, reg, address, size, 1, 1);
}
+
+static inline void exec_ext_inst(struct sux *cpu, uint8_t opcode, uint8_t prefix, union reg value, union reg address, uint8_t size, uint8_t thread) {
+ uint8_t addr_size = get_addrsize(ext_optype[opcode], prefix);
+ uint8_t tmp = 0;
+ switch (opcode) {
+ case LEA_AB : /* LEA Absolute. */
+ case LEA_AX : /* LEA Absolute, Indexed with X. */
+ case LEA_AY : /* LEA Absolute, Indexed with Y. */
+ case LEA_AI : /* LEA Absolute Indirect. */
+ case LEA_AIX: /* LEA Absolute Indexed Idirect. */
+ case LEA_AIY: /* LEA Absolute Indirect Indexed. */
+ case LEA_Z : /* LEA Zero Matrix. */
+ case LEA_ZX : /* LEA Zero Matrix, Indexed with X. */
+ case LEA_ZY : /* LEA Zero Matrix, Indexed with Y. */
+ case LEA_IN : /* LEA Indirect. */
+ case LEA_IX : /* LEA Indexed Idirect. */
+ case LEA_IY : /* LEA Indirect Indexed. */
+ cpu->e = address.u64;
+ break;
+ case PEA_AB : /* PEA Absolute. */
+ case PEA_AX : /* PEA Absolute, Indexed with X. */
+ case PEA_AY : /* PEA Absolute, Indexed with Y. */
+ case PEA_AI : /* PEA Absolute Indirect. */
+ case PEA_AIX: /* PEA Absolute Indexed Idirect. */
+ case PEA_AIY: /* PEA Absolute Indirect Indexed. */
+ case PEA_Z : /* PEA Zero Matrix. */
+ case PEA_ZX : /* PEA Zero Matrix, Indexed with X. */
+ case PEA_ZY : /* PEA Zero Matrix, Indexed with Y. */
+ case PEA_IN : /* PEA Indirect. */
+ case PEA_IX : /* PEA Indexed Idirect. */
+ case PEA_IY : /* PEA Indirect Indexed. */
+ push(cpu, address.u64, 7, thread);
+ break;
+ case ADD_IMM: /* ADD Immediate. */
+ case ADD_AB : /* ADD Absolute. */
+ case ADD_Z : /* ADD Zero Matrix. */
+ case ADD_E : /* ADD E Indirect. */
+ cpu->a = adc(cpu, cpu->a, value.u64, 0, thread);
+ break;
+ case SUB_IMM: /* SUB Immediate. */
+ case SUB_AB : /* SUB Absolute. */
+ case SUB_Z : /* SUB Zero Matrix. */
+ case SUB_E : /* SUB E Indirect. */
+ cpu->a = adc(cpu, cpu->a, ~value.u64, 1, thread);
+ break;
+ case ADE_IMM: /* ADE Immediate. */
+ case ADE_AB : /* ADE Absolute. */
+ case ADE_Z : /* ADE Zero Matrix. */
+ cpu->e = adc(cpu, cpu->e, value.u64, 0, thread);
+ break;
+ case SBE_IMM: /* SBE Immediate. */
+ case SBE_AB : /* SBE Absolute. */
+ case SBE_Z : /* SBE Zero Matrix. */
+ cpu->e = adc(cpu, cpu->e, ~value.u64, 1, thread);
+ break;
+ case ADS_IMM: /* ADS Immediate. */
+ case ADS_AB : /* ADS Absolute. */
+ case ADS_Z : /* ADS Zero Matrix. */
+ case ADS_E : /* ADS E Indirect. */
+ cpu->sp = adc(cpu, cpu->sp, value.u64, 0, thread);
+ break;
+ case SBS_IMM: /* SBS Immediate. */
+ case SBS_AB : /* SBS Absolute. */
+ case SBS_Z : /* SBS Zero Matrix. */
+ case SBS_E : /* SBS E Indirect. */
+ cpu->sp = adc(cpu, cpu->sp, ~value.u64, 1, thread);
+ break;
+ case NOT_A : /* NOT Accumulator. */
+ cpu->a = ~cpu->a;
+ break;
+ case NOT_AB: /* NOT Absolute. */
+ case NOT_Z : /* NOT Zero Matrix. */
+ case NOT_E : /* NOT E Indirect. */
+ not_mem(cpu, address.u64, prefix, thread);
+ break;
+ case LLM_AB: /* LLM Absolute. */
+ case LLM_Z : /* LLM Zero Matrix. */
+ case LLM_E : /* LLM E Indirect. */
+ case LRM_AB: /* LRM Absolute. */
+ case LRM_Z : /* LRM Zero Matrix. */
+ case LRM_E : /* LRM E Indirect. */
+ case RLM_AB: /* RLM Absolute. */
+ case RLM_Z : /* RLM Zero Matrix. */
+ case RLM_E : /* RLM E Indirect. */
+ case RRM_AB: /* RRM Absolute. */
+ case RRM_Z : /* RRM Zero Matrix. */
+ case RRM_E : /* RRM E Indirect. */
+ case ARM_AB: /* ARM Absolute. */
+ case ARM_Z : /* ARM Zero Matrix. */
+ case ARM_E : /* ARM E Indirect. */
+ switch (opcode) {
+ case LLM_AB:
+ case LLM_Z :
+ case LLM_E : tmp = 0; break;
+ case LRM_AB:
+ case LRM_Z :
+ case LRM_E : tmp = 1; break;
+ case RLM_AB:
+ case RLM_Z :
+ case RLM_E : tmp = 2; break;
+ case RRM_AB:
+ case RRM_Z :
+ case RRM_E : tmp = 3; break;
+ case ARM_AB:
+ case ARM_Z :
+ case ARM_E : tmp = 4; break;
+ }
+ bitshft_mem(cpu, tmp, cpu->b, address.u64, prefix, thread);
+ break;
+ case PHE_IMP: push(cpu, cpu->e, size, thread); break; /* PusH E register. */
+ case PLE_IMP: pull(cpu, size, thread); break; /* PuLl E register. */
+ case CPE_IMM: /* CPE Immediate. */
+ case CPE_AB : /* CPE Absolute. */
+ case CPE_Z : /* CPE Zero Matrix. */
+ adc(cpu, cpu->e, ~value.u64, 1, thread);
+ break;
+ case ICE_AB : /* ICE Absolute. */
+ case ICE_Z : /* ICE Zero Matrix. */
+ case ICE_E : /* ICE E Indirect. */
+ break;
+ case LDS_IMM: /* LDS Immediate. */
+ case LDS_AB : /* LDS Absolute. */
+ case LDS_Z : /* LDS Zero Matrix. */
+ case LDS_E : /* LDS E Indirect. */
+ cpu->sp = load(cpu, cpu->sp, address.u64, size, thread);
+ break;
+ case DEE_IMP: cpu->e = idr(cpu, cpu->e, 0, thread); break; /* DEcrement E register. */
+ case INE_IMP: cpu->e = idr(cpu, cpu->e, 1, thread); break; /* INcrement E register. */
+ case DES_IMP: cpu->sp = idr(cpu, cpu->sp, 0, thread); break; /* DEcrement Stack pointer. */
+ case INS_IMP: cpu->sp = idr(cpu, cpu->sp, 1, thread); break; /* INcrement Stack pointer. */
+ case STS_AB: /* STS Absolute. */
+ case STS_Z : /* STS Zero Matrix. */
+ case STS_E : /* STS E Indirect. */
+ store(cpu, address.u64, cpu->sp, prefix, thread);
+ break;
+ case STE_AB: /* STE Absolute. */
+ case STE_Z : /* STE Zero Matrix. */
+ store(cpu, address.u64, cpu->sp, prefix, thread);
+ break;
+ case STZ_AB: /* STZ Absolute. */
+ case STZ_Z : /* STZ Zero Matrix. */
+ case STZ_E : /* STZ E Indirect. */
+ store(cpu, address.u64, 0, prefix, thread);
+ break;
+ case SCO_IMM: /* SCO Immediate. */
+ case SCO_AB : /* SCO Absolute. */
+ case SCO_Z : /* SCO Zero Matrix. */
+ case SCO_E : /* SCO E Indirect. */
+ break;
+ case ECO_IMM: /* ECO Immediate. */
+ case ECO_AB : /* ECO Absolute. */
+ case ECO_Z : /* ECO Zero Matrix. */
+ case ECO_E : /* ECO E Indirect. */
+ break;
+ case CLZ_AB: /* CLZ Absolute. */
+ case CLZ_Z : /* CLZ Zero Matrix. */
+ case CLZ_E : /* CLZ E Indirect. */
+ cpu->a = lbcnt(cpu, value.u64, 0, size, thread);
+ break;
+ case CLO_AB: /* CLO Absolute. */
+ case CLO_Z : /* CLO Zero Matrix. */
+ case CLO_E : /* CLO E Indirect. */
+ cpu->a = lbcnt(cpu, value.u64, 1, size, thread);
+ break;
+ case BIT_AB: /* BIT Absolute. */
+ case BIT_Z : /* BIT Zero Matrix. */
+ case BIT_E : /* BIT E Indirect. */
+ bit_test(cpu, cpu->a, value.u64, thread);
+ break;
+ case MMV_IMP: /* Memory MoVe. */
+ cpu->b = mem_move(cpu, cpu->b, cpu->x, cpu->y, 0, size, thread);
+ break;
+ case SWP_A : /* SWaP lower half, with upper half. */
+ cpu->a = swap(cpu, cpu->a, size, thread);
+ break;
+ case SWP_AB: /* SWP Absolute. */
+ case SWP_Z : /* SWP Zero Matrix. */
+ case SWP_E : /* SWP E Indirect. */
+ swap_mem(cpu, address.u64, size, thread);
+ break;
+ case PCN_AB: /* PCN Absolute. */
+ case PCN_Z : /* PCN Zero Matrix. */
+ case PCN_E : /* PCN E Indirect. */
+ cpu->a = popcnt(cpu, value.u64, thread);
+ break;
+ case REP_REL: /* REP Relative. */
+ if (cpu->b != 0) {
+ cpu->b--;
+ cpu->pc = address.u64;
+ }
+ break;
+ case REQ_REL: /* REQ Relative. */
+ if (cpu->b != 0 && getflag(Z)) {
+ cpu->b--;
+ cpu->pc = address.u64;
+ }
+ break;
+ case RNE_REL: /* RNE Relative. */
+ if (cpu->b != 0 && !getflag(Z)) {
+ cpu->b--;
+ cpu->pc = address.u64;
+ }
+ break;
+ case LNG_IMM: /* LNG Immediate. */
+ case LNG_E : /* LNG E Indirect. */
+ if (getflag(N)) {
+ cpu->a = load(cpu, cpu->a, address.u64, size, thread);
+ }
+ break;
+ case LPO_IMM: /* LPO Immediate. */
+ case LPO_E : /* LPO E Indirect. */
+ if (!getflag(N)) {
+ cpu->a = load(cpu, cpu->a, address.u64, size, thread);
+ }
+ break;
+ case LCS_IMM: /* LCS Immediate. */
+ case LCS_E : /* LCS E Indirect. */
+ if (getflag(C)) {
+ cpu->a = load(cpu, cpu->a, address.u64, size, thread);
+ }
+ break;
+ case LCC_IMM: /* LCC Immediate. */
+ case LCC_E : /* LCC E Indirect. */
+ if (!getflag(C)) {
+ cpu->a = load(cpu, cpu->a, address.u64, size, thread);
+ }
+ break;
+ case LEQ_IMM: /* LEQ Immediate. */
+ case LEQ_E : /* LEQ E Indirect. */
+ if (getflag(Z)) {
+ cpu->a = load(cpu, cpu->a, address.u64, size, thread);
+ }
+ break;
+ case LNE_IMM: /* LNE Immediate. */
+ case LNE_E : /* LNE E Indirect. */
+ if (!getflag(Z)) {
+ cpu->a = load(cpu, cpu->a, address.u64, size, thread);
+ }
+ break;
+ case SNG_E : /* SNG E Indirect. */
+ if (getflag(N)) {
+ store(cpu, address.u64, cpu->a, prefix, thread);
+ }
+ break;
+ case SPO_E : /* SPO E Indirect. */
+ if (!getflag(N)) {
+ store(cpu, address.u64, cpu->a, prefix, thread);
+ }
+ break;
+ case SCS_E : /* SCS E Indirect. */
+ if (getflag(C)) {
+ store(cpu, address.u64, cpu->a, prefix, thread);
+ }
+ break;
+ case SCC_E : /* SCC E Indirect. */
+ if (!getflag(C)) {
+ store(cpu, address.u64, cpu->a, prefix, thread);
+ }
+ break;
+ case SEQ_E : /* SEQ E Indirect. */
+ if (getflag(Z)) {
+ store(cpu, address.u64, cpu->a, prefix, thread);
+ }
+ break;
+ case SNE_E : /* SNE E Indirect. */
+ if (!getflag(Z)) {
+ store(cpu, address.u64, cpu->a, prefix, thread);
+ }
+ break;
+
+ }
+}
+
+static inline void exec_base_inst(struct sux *cpu, uint8_t opcode, uint8_t prefix, union reg value, union reg address, uint8_t size, uint8_t thread) {
+ uint64_t *rem = 0;
+ switch (opcode) {
+ case CPS_IMP: /* Clear Processor Status. */
+ cpu->ps.u8[thread] = 0;
+ break;
+ case ADC_B: /* ADC B register. */
+ value.u64 = cpu->b; /* Falls Through. */
+ case ADC_IMM: /* ADC Immediate. */
+ case ADC_AB: /* ADC Absolute. */
+ case ADC_Z: /* ADC Zero Matrix. */
+ cpu->a = adc(cpu, cpu->a, value.u64, getflag(C), thread);
+ break;
+ case PHP_IMP: push(cpu, cpu->ps.u8[thread], 0, thread); break; /* PusH Processor status to stack. */
+ case PHA_IMP: push(cpu, cpu->a , size, thread); break; /* PusH Accumulator to stack. */
+ case PHB_IMP: push(cpu, cpu->b , size, thread); break; /* PusH B register to stack. */
+ case PHY_IMP: push(cpu, cpu->y , size, thread); break; /* PusH Y register to stack. */
+ case PHX_IMP: push(cpu, cpu->x , size, thread); break; /* PusH X register to stack. */
+ case TAY_IMP: cpu->y = transfer(cpu, cpu->a , value.u64, thread); break; /* Transfer Accumulator to Y. */
+ case TAX_IMP: cpu->x = transfer(cpu, cpu->a , value.u64, thread); break; /* Transfer Accumulator to Y. */
+ case TYX_IMP: cpu->x = transfer(cpu, cpu->y , value.u64, thread); break; /* Transfer Y to X. */
+ case TYA_IMP: cpu->a = transfer(cpu, cpu->y , value.u64, thread); break; /* Transfer Y to Accumulator. */
+ case TXA_IMP: cpu->a = transfer(cpu, cpu->x , value.u64, thread); break; /* Transfer X to Accumulator. */
+ case TXY_IMP: cpu->y = transfer(cpu, cpu->x , value.u64, thread); break; /* Transfer X to Y. */
+ case TAB_IMP: cpu->b = transfer(cpu, cpu->a , value.u64, thread); break; /* Transfer Accumulator to B. */
+ case TSX_IMP: cpu->x = transfer(cpu, cpu->sp, value.u64, thread); break; /* Transfer Stack pointer to X. */
+ case TBA_IMP: cpu->a = transfer(cpu, cpu->b , value.u64, thread); break; /* Transfer B to Accumulator. */
+ case TXS_IMP: cpu->sp = transfer(cpu, cpu->x , value.u64, thread); break; /* Transfer X to Stack pointer. */
+ case BRA_REL: /* BRA Relative. */
+ case JMP_AB: /* JMP Absolute. */
+ case JMP_Z: /* JMP Zero Matrix. */
+ case JMP_IN: /* JMP Indirect. */
+ cpu->pc = address.u64;
+ break;
+ case SBC_B: /* SBC B register. */
+ value.u64 = cpu->b; /* Falls Through. */
+ case SBC_IMM: /* SBC Immediate. */
+ case SBC_AB: /* SBC Absolute. */
+ case SBC_Z: /* SBC Zero Matrix. */
+ cpu->a = adc(cpu, cpu->a, ~value.u64, getflag(C), thread);
+ break;
+ case PLP_IMP: cpu->ps.u8[thread] = pull(cpu, 0, thread); break; /* PuLl Processor status from stack. */
+ case PLA_IMP: cpu->a = pull(cpu, size, thread); break; /* PuLl Accumulator from stack. */
+ case PLB_IMP: cpu->b = pull(cpu, size, thread); break; /* PuLl B register from stack. */
+ case PLY_IMP: cpu->y = pull(cpu, size, thread); break; /* PuLl Y register from stack. */
+ case PLX_IMP: cpu->x = pull(cpu, size, thread); break; /* PuLl X register from stack. */
+ break;
+ case AND_B: /* AND B register. */
+ value.u64 = cpu->b; /* Falls Through. */
+ case AND_IMM: /* AND Immediate. */
+ case AND_AB: /* AND Absolute. */
+ case AND_Z: /* AND Zero Matrix. */
+ cpu->a = and(cpu, cpu->a, value.u64, thread);
+ break;
+ case BPO_REL: /* BPO Relative. */
+ if (!getflag(N)) {
+ cpu->pc = address.u64;
+ }
+ break;
+ case ORA_B: /* ORA B register. */
+ value.u64 = cpu->b; /* Falls Through. */
+ case ORA_IMM: /* ORA Immediate. */
+ case ORA_AB: /* ORA Absolute. */
+ case ORA_Z: /* ORA Zero Matrix. */
+ cpu->a = or(cpu, cpu->a, value.u64, thread);
+ break;
+ case SEI_IMP: /* SEt Interrupt. */
+ setflag(1, I);
+ break;
+ case BNG_REL: /* BNG Relative. */
+ if (getflag(N)) {
+ cpu->pc = address.u64;
+ }
+ break;
+ case XOR_B: /* XOR B register. */
+ value.u64 = cpu->b; /* Falls Through. */
+ case XOR_IMM: /* XOR Immediate. */
+ case XOR_AB: /* XOR Absolute. */
+ case XOR_Z: /* XOR Zero Matrix. */
+ cpu->a = xor(cpu, cpu->a, value.u64, thread);
+ break;
+ case CLI_IMP: /* CLear Interrupt. */
+ setflag(0, I);
+ break;
+ case BCS_REL: /* BCS Relative. */
+ if (getflag(C)) {
+ cpu->pc = address.u64;
+ }
+ break;
+ case LSL_B: /* LSL B register. */
+ value.u64 = cpu->b; /* Falls Through. */
+ case LSL_IMM: /* LSL Immediate. */
+ case LSL_AB: /* LSL Absolute. */
+ case LSL_Z: /* LSL Zero Matrix. */
+ cpu->a = lsl(cpu, cpu->a, value.u64, 8, thread);
+ break;
+ case SEC_IMP: /* SEt Carry flag.*/
+ setflag(1, C);
+ break;
+ case STA_AB: /* STA Absolute. */
+ case STA_Z: /* STA Zero Matrix. */
+ case STA_ZX: /* STA Zero Matrix, Indexed with X. */
+ case STA_ZY: /* STA Zero Matrix, Indexed with Y. */
+ case STA_IN: /* STA Indirect. */
+ case STA_IX: /* STA Indexed Indirect. */
+ case STA_IY: /* STA Indirect Indexed. */
+ store(cpu, address.u64, cpu->a, prefix, thread);
+ break;
+ case STY_AB: /* STY Absolute. */
+ case STY_Z: /* STY Zero Matrix. */
+ case STY_IN: /* STY Indirect. */
+ store(cpu, address.u64, cpu->y, prefix, thread);
+ break;
+ case STX_AB: /* STX Absolute. */
+ case STX_Z: /* STX Zero Matrix. */
+ case STX_IN: /* STX Indirect. */
+ store(cpu, address.u64, cpu->x, prefix, thread);
+ break;
+ case STB_AB: /* STB Absolute. */
+ case STB_Z: /* STB Zero Matrix. */
+ case STB_ZX: /* STB Zero Matrix, Indexed with X. */
+ case STB_ZY: /* STB Zero Matrix, Indexed with Y. */
+ case STB_IN: /* STB Indirect. */
+ case STB_IX: /* STB Indexed Indirect. */
+ case STB_IY: /* STB Indirect Indexed. */
+ store(cpu, address.u64, cpu->b, prefix, thread);
+ break;
+ case BCC_REL: /* BCC Relative. */
+ if (!getflag(C)) {
+ cpu->pc = address.u64;
+ }
+ break;
+ case LSR_B: /* LSR B register. */
+ value.u64 = cpu->b; /* Falls Through. */
+ case LSR_IMM: /* LSR Immediate. */
+ case LSR_AB: /* LSR Absolute. */
+ case LSR_Z: /* LSR Zero Matrix. */
+ cpu->a = lsr(cpu, cpu->a, value.u64, 8, thread);
+ break;
+ case ASR_B: /* ASR B register. */
+ value.u64 = cpu->b; /* Falls Through. */
+ case ASR_IMM: /* ASR Immediate. */
+ case ASR_AB: /* ASR Absolute. */
+ case ASR_Z: /* ASR Zero Matrix. */
+ cpu->a = asr(cpu, cpu->a, value.u64, 8, thread);
+ break;
+ case CLC_IMP: /* CLear Carry flag. */
+ setflag(0, C);
+ break;
+ case LDB_IMM: /* LDB Immediate. */
+ case LDB_AB: /* LDB Absolute. */
+ case LDB_Z: /* LDB Zero Matrix. */
+ case LDB_ZX: /* LDB Zero Matrix, Indexed with X. */
+ case LDB_ZY: /* LDB Zero Matrix, Indexed with Y. */
+ case LDB_IN: /* LDB Indirect. */
+ case LDB_IX: /* LDB Indexed Indirect. */
+ case LDB_IY: /* LDB Indirect Indexed. */
+ cpu->b = load(cpu, cpu->b, address.u64, size, thread);
+ break;
+ case LDA_IMM: /* LDA Immediate. */
+ case LDA_AB: /* LDA Absolute. */
+ case LDA_Z: /* LDA Zero Matrix. */
+ case LDA_ZX: /* LDA Zero Matrix, Indexed with X. */
+ case LDA_ZY: /* LDA Zero Matrix, Indexed with Y. */
+ case LDA_IN: /* LDA Indirect. */
+ case LDA_IX: /* LDA Indexed Indirect. */
+ case LDA_IY: /* LDA Indirect Indexed. */
+ cpu->a = load(cpu, cpu->a, address.u64, size, thread);
+ break;
+ case LDY_IMM: /* LDY Immediate. */
+ case LDY_AB: /* LDY Absolute. */
+ case LDY_Z: /* LDY Zero Matrix. */
+ case LDY_IN: /* LDY Indirect. */
+ cpu->y = load(cpu, cpu->y, address.u64, size, thread);
+ break;
+ case LDX_IMM: /* LDX Immediate. */
+ case LDX_AB: /* LDX Absolute. */
+ case LDX_Z: /* LDX Zero Matrix. */
+ case LDX_IN: /* LDX Indirect. */
+ cpu->x = load(cpu, cpu->x, address.u64, size, thread);
+ break;
+ case BEQ_REL: /* BEQ Relative. */
+ if (getflag(Z)) {
+ cpu->pc = address.u64;
+ }
+ break;
+ case ROL_B: /* ROL B register. */
+ value.u64 = cpu->b; /* Falls Through. */
+ case ROL_IMM: /* ROL Immediate. */
+ case ROL_AB: /* ROL Absolute. */
+ case ROL_Z: /* ROL Zero Matrix. */
+ cpu->a = rol(cpu, cpu->a, value.u64, 8, thread);
+ break;
+ case BNE_REL: /* BNE Relative. */
+ if (!getflag(Z)) {
+ cpu->pc = address.u64;
+ }
+ break;
+ case ROR_B: /* ROR B register. */
+ value.u64 = cpu->b; /* Falls Through. */
+ case ROR_IMM: /* ROR Immediate. */
+ case ROR_AB: /* ROR Absolute. */
+ case ROR_Z: /* ROR Zero Matrix. */
+ cpu->a = ror(cpu, cpu->a, value.u64, 8, thread);
+ break;
+ case BVS_REL: /* BVS Relative. */
+ if (getflag(V)) {
+ cpu->pc = address.u64;
+ }
+ break;
+ case MUL_B: /* MUL B register. */
+ value.u64 = cpu->b; /* Falls Through. */
+ case MUL_IMM: /* MUL Immediate. */
+ case MUL_AB: /* MUL Absolute. */
+ case MUL_Z: /* MUL Zero Matrix. */
+ cpu->a = mul(cpu, cpu->a, value.u64, thread);
+ break;
+ case BVC_REL: /* BVC Relative. */
+ if (!getflag(V)) {
+ cpu->pc = address.u64;
+ }
+ break;
+ case DIV_B: /* DIV B register. */
+ case DIV_IMM: /* DIV Immediate. */
+ case DIV_AB: /* DIV Absolute. */
+ case DIV_Z: /* DIV Zero Matrix. */
+ rem = (opcode != DIV_B) ? &cpu->b : &cpu->x;
+ cpu->a = divd(cpu, cpu->a, value.u64, rem, thread);
+ break;
+ case CLV_IMP: /* CLear oVerflow flag. */
+ setflag(0, V);
+ break;
+ case CPB_IMM: /* CPB Immediate. */
+ case CPB_AB: /* CPB Absolute. */
+ case CPB_Z: /* CPB Zero Matrix. */
+ case CPB_IN: /* CPB Indirect. */
+ case CPB_IX: /* CPB Indexed Indirect. */
+ case CPB_IY: /* CPB Indirect Indexed. */
+ adc(cpu, cpu->b, ~value.u64, 1, thread);
+ break;
+ case CMP_B: /* CMP B register. */
+ value.u64 = cpu->b; /* Falls Through. */
+ case CMP_IMM: /* CMP Immediate. */
+ case CMP_AB: /* CMP Absolute. */
+ case CMP_Z: /* CMP Zero Matrix. */
+ case CMP_IN: /* CMP Indirect. */
+ case CMP_IX: /* CMP Indexed Indirect. */
+ case CMP_IY: /* CMP Indirect Indexed. */
+ adc(cpu, cpu->a, ~value.u64, 1, thread);
+ break;
+ case CPY_IMM: /* CPY Immediate. */
+ case CPY_AB: /* CPY Absolute. */
+ case CPY_Z: /* CPY Zero Matrix. */
+ adc(cpu, cpu->y, ~value.u64, 1, thread);
+ break;
+ case CPX_IMM: /* CPX Immediate. */
+ case CPX_AB: /* CPX Absolute. */
+ case CPX_Z: /* CPX Zero Matrix. */
+ adc(cpu, cpu->x, ~value.u64, 1, thread);
+ break;
+ case INC_IMP: cpu->a = idr(cpu, cpu->a, 1, thread); break;
+ case INB_IMP: cpu->b = idr(cpu, cpu->b, 1, thread); break;
+ case INY_IMP: cpu->y = idr(cpu, cpu->y, 1, thread); break;
+ case INX_IMP: cpu->x = idr(cpu, cpu->x, 1, thread); break;
+ case DEC_IMP: cpu->a = idr(cpu, cpu->a, 0, thread); break;
+ case DEB_IMP: cpu->b = idr(cpu, cpu->b, 0, thread); break;
+ case DEY_IMP: cpu->y = idr(cpu, cpu->y, 0, thread); break;
+ case DEX_IMP: cpu->x = idr(cpu, cpu->x, 0, thread); break;
+ case JSR_IN: /* JSR Indirect. */
+ case JSR_AB: /* Jump to SubRoutine. */
+ case JSR_Z: /* JSR Zero Matrix. */
+ push(cpu, cpu->pc, (size) ? size : 7, thread);
+ cpu->pc = address.u64;
+ break;
+ case INC_AB: /* INC Absolute. */
+ case INC_Z: /* INC Zero Matrix. */
+ idm(cpu, address.u64, prefix, 1, thread);
+ break;
+ case NOP_IMP: /* No OPeration. */
+ break;
+ case RTI_IMP: /* ReTurn from Interrupt routine. */
+ cpu->ps.u8[thread] = pull(cpu, 0, thread);
+ size = 0;
+ case RTS_IMP: /* ReTurn from Subroutine. */
+ cpu->pc = pull(cpu, (size) ? size : 7, thread);
+ break;
+ case DEC_AB: /* DEC Absolute. */
+ case DEC_Z: /* DEC Zero Matrix. */
+ idm(cpu, address.u64, prefix, 0, thread);
+ break;
+ case BRK_IMP: /* BReaK. */
+ case WAI_IMP: /* WAit for Interrupt. */
+ if (opcode == WAI_IMP) {
+ pthread_mutex_lock(&main_mutex);
+ pthread_cond_signal(&main_cond);
+ pthread_mutex_unlock(&main_mutex);
+ pthread_mutex_lock(&mutex);
+ pthread_cond_wait(&cond, &mutex);
+ pthread_mutex_unlock(&mutex);
+ }
+ push(cpu, cpu->pc, 7, thread);
+ push(cpu, cpu->ps.u8[thread], 0, thread);
+ setflag(1, I);
+ value.u64 = read_value(cpu, 0, (opcode == BRK) ? 0xFFE0 : 0xFFA0, 7, 1, 0);
+ if (opcode == WAI_IMP) {
+ kbd_rdy &= (uint8_t)~(1 << thread);
+ }
+ cpu->pc = value.u64;
+ default:
+ break;
+ }
+}