#include "opcode.h"
void setps(struct sux *cpu, uint8_t thread) {
(cpu->c[thread]) ? (cpu->ps |= (C << 8*thread)) : (cpu->ps &= ~(C << 8*thread));
(cpu->z[thread]) ? (cpu->ps |= (Z << 8*thread)) : (cpu->ps &= ~(Z << 8*thread));
(cpu->i[thread]) ? (cpu->ps |= (I << 8*thread)) : (cpu->ps &= ~(I << 8*thread));
(cpu->s[thread]) ? (cpu->ps |= (S << 8*thread)) : (cpu->ps &= ~(S << 8*thread));
(cpu->v[thread]) ? (cpu->ps |= (V << 8*thread)) : (cpu->ps &= ~(V << 8*thread));
(cpu->n[thread]) ? (cpu->ps |= (N << 8*thread)) : (cpu->ps &= ~(N << 8*thread));
}
void adc(struct sux *cpu, uint64_t adr, uint8_t thread, uint8_t regsize) {
uint64_t value;
value = (uint64_t)addr[adr];
if (regsize >= 2)
value += (uint64_t)addr[adr+1] << 8;
if (regsize >= 4) {
value += (uint64_t)addr[adr+2] << 16;
value += (uint64_t)addr[adr+3] << 24;
}
if (regsize >= 8) {
value += (uint64_t)addr[adr+4] << 32;
value += (uint64_t)addr[adr+5] << 40;
value += (uint64_t)addr[adr+6] << 48;
value += (uint64_t)addr[adr+7] << 56;
}
uint64_t sum = cpu->a[thread]+value+cpu->c[thread];
cpu->z[thread] = (sum == 0);
cpu->n[thread] = (sum >> 63);
cpu->v[thread] = !((cpu->a[thread]^value) & 0x8000000000000000) && ((cpu->a[thread]^sum) & 0x8000000000000000);
cpu->c[thread] = (sum < value);
cpu->a[thread] = sum;
setps(cpu, thread);
}
void sbc(struct sux *cpu, uint64_t adr, uint8_t thread, uint8_t regsize) {
uint64_t value;
value = (uint64_t)addr[adr];
if (regsize >= 2)
value += (uint64_t)addr[adr+1] << 8;
if (regsize >= 4) {
value += (uint64_t)addr[adr+2] << 16;
value += (uint64_t)addr[adr+3] << 24;
}
if (regsize >= 8) {
value += (uint64_t)addr[adr+4] << 32;
value += (uint64_t)addr[adr+5] << 40;
value += (uint64_t)addr[adr+6] << 48;
value += (uint64_t)addr[adr+7] << 56;
}
uint64_t sum = cpu->a[thread]-value-!cpu->c[thread];
cpu->z[thread] = (sum == 0);
cpu->n[thread] = (sum >> 63);
cpu->v[thread] = ((cpu->a[thread]^value) & 0x8000000000000000) && ((cpu->a[thread]^sum) & 0x8000000000000000);
cpu->c[thread] = (sum > value);
cpu->a[thread] = sum;
setps(cpu, thread);
}
void mul(struct sux *cpu, uint64_t adr, uint8_t thread, uint8_t regsize) {
uint64_t value;
value = (uint64_t)addr[adr];
if (regsize >= 2)
value += (uint64_t)addr[adr+1] << 8;
if (regsize >= 4) {
value += (uint64_t)addr[adr+2] << 16;
value += (uint64_t)addr[adr+3] << 24;
}
if (regsize >= 8) {
value += (uint64_t)addr[adr+4] << 32;
value += (uint64_t)addr[adr+5] << 40;
value += (uint64_t)addr[adr+6] << 48;
value += (uint64_t)addr[adr+7] << 56;
}
uint64_t sum = cpu->a[thread]*value+cpu->c[thread];
cpu->z[thread] = (sum == 0);
cpu->n[thread] = (sum >> 63);
cpu->v[thread] = !((cpu->a[thread]^value) & 0x8000000000000000) && ((cpu->a[thread]^sum) & 0x8000000000000000);
cpu->c[thread] = (!((cpu->a[thread]^sum) && (cpu->a[thread]^value)) && (cpu->a[thread] >= ((uint64_t)1 << 32) && value >= ((uint64_t)1 << 32)));
cpu->a[thread] = sum;
setps(cpu, thread);
}
void divd(struct sux *cpu, uint64_t adr, uint8_t thread, uint8_t regsize) {
uint64_t value;
value = (uint64_t)addr[adr];
if (regsize >= 2)
value += (uint64_t)addr[adr+1] << 8;
if (regsize >= 4) {
value += (uint64_t)addr[adr+2] << 16;
value += (uint64_t)addr[adr+3] << 24;
}
if (regsize >= 8) {
value += (uint64_t)addr[adr+4] << 32;
value += (uint64_t)addr[adr+5] << 40;
value += (uint64_t)addr[adr+6] << 48;
value += (uint64_t)addr[adr+7] << 56;
}
uint64_t sum = cpu->a[thread]/value;
cpu->z[thread] = (sum == 0);
cpu->v[thread] = !((cpu->a[thread]^value) & 0x8000000000000000) && ((cpu->a[thread]^sum) & 0x8000000000000000);
cpu->a[thread] = sum;
setps(cpu, thread);
}
uint64_t and(struct sux *cpu, uint64_t value, uint8_t thread) {
uint64_t sum;
sum &= value;
cpu->z[thread] = (sum == 0);
cpu->n[thread] = (sum >> 63);
setps(cpu, thread);
return sum;
}
void and_addr(struct sux *cpu, uint64_t* const reg, uint64_t adr, uint8_t thread, uint8_t regsize) {
uint64_t value;
value = (uint64_t)addr[adr];
if (regsize >= 2)
value += (uint64_t)addr[adr+1] << 8;
if (regsize >= 4) {
value += (uint64_t)addr[adr+2] << 16;
value += (uint64_t)addr[adr+3] << 24;
}
if (regsize >= 8) {
value += (uint64_t)addr[adr+4] << 32;
value += (uint64_t)addr[adr+5] << 40;
value += (uint64_t)addr[adr+6] << 48;
value += (uint64_t)addr[adr+7] << 56;
}
*reg &= value;
cpu->z[thread] = (*reg == 0);
cpu->n[thread] = (*reg >> 63);
setps(cpu, thread);
}
uint64_t or(struct sux *cpu, uint64_t value, uint8_t thread) {
uint64_t sum;
sum |= value;
cpu->z[thread] = (sum == 0);
cpu->n[thread] = (sum >> 63);
setps(cpu, thread);
return sum;
}
void or_addr(struct sux *cpu, uint64_t* const reg, uint64_t adr, uint8_t thread, uint8_t regsize) {
uint64_t value;
value = (uint64_t)addr[adr];
if (regsize >= 2)
value += (uint64_t)addr[adr+1] << 8;
if (regsize >= 4) {
value += (uint64_t)addr[adr+2] << 16;
value += (uint64_t)addr[adr+3] << 24;
}
if (regsize >= 8) {
value += (uint64_t)addr[adr+4] << 32;
value += (uint64_t)addr[adr+5] << 40;
value += (uint64_t)addr[adr+6] << 48;
value += (uint64_t)addr[adr+7] << 56;
}
*reg |= value;
cpu->z[thread] = (*reg == 0);
cpu->n[thread] = (*reg >> 63);
setps(cpu, thread);
}
uint64_t xor(struct sux *cpu, uint64_t value, uint8_t thread) {
uint64_t sum;
sum ^= value;
cpu->z[thread] = (sum == 0);
cpu->n[thread] = (sum >> 63);
setps(cpu, thread);
return sum;
}
void xor_addr(struct sux *cpu, uint64_t* const reg, uint64_t adr, uint8_t thread, uint8_t regsize) {
uint64_t value;
value = (uint64_t)addr[adr];
if (regsize >= 2)
value += (uint64_t)addr[adr+1] << 8;
if (regsize >= 4) {
value += (uint64_t)addr[adr+2] << 16;
value += (uint64_t)addr[adr+3] << 24;
}
if (regsize >= 8) {
value += (uint64_t)addr[adr+4] << 32;
value += (uint64_t)addr[adr+5] << 40;
value += (uint64_t)addr[adr+6] << 48;
value += (uint64_t)addr[adr+7] << 56;
}
*reg ^= value;
cpu->z[thread] = (*reg == 0);
cpu->n[thread] = (*reg >> 63);
setps(cpu, thread);
}
void rol(struct sux *cpu, uint64_t adr, uint8_t thread) {
uint64_t value = addr[adr];
uint64_t sum = cpu->a[thread] << value;
sum |= cpu->c[thread];
cpu->z[thread] = (sum == 0);
cpu->n[thread] = (sum >> 63);
cpu->c[thread] = cpu->a[thread] >> (uint64_t)64-value;
cpu->a[thread] = sum;
setps(cpu, thread);
}
void ror(struct sux *cpu, uint64_t adr, uint8_t thread) {
uint64_t value = addr[adr];
uint64_t sum = cpu->a[thread] >> value;
sum |= (uint64_t)cpu->c[thread] << (uint64_t)64-value;
cpu->c[thread] = cpu->a[thread] & 1;
cpu->a[thread] = sum;
setps(cpu, thread);
}
void lsl(struct sux *cpu, uint64_t adr, uint8_t thread) {
uint64_t value = addr[adr];
uint64_t sum = (value < 64) ? cpu->a[thread] << value : 0;
cpu->c[thread] = cpu->a[thread] >> 64-value;
cpu->a[thread] = sum;
setps(cpu, thread);
}
void lsr(struct sux *cpu, uint64_t adr, uint8_t thread) {
uint64_t value = addr[adr];
uint64_t sum = (value < 64) ? cpu->a[thread] >> value : 0;
cpu->c[thread] = cpu->a[thread] & 1;
cpu->a[thread] = sum;
setps(cpu, thread);
}
void inc(struct sux *cpu, uint64_t *reg, uint8_t thread) {
*reg += 1;
cpu->z[thread] = (*reg == 0);
cpu->n[thread] = (*reg >> 63);
setps(cpu, thread);
}
void inc_addr(struct sux *cpu, uint64_t adr, uint8_t thread) {
addr[adr]++;
}
void dec(struct sux *cpu, uint64_t *reg, uint8_t thread) {
*reg -= 1;
cpu->z[thread] = (*reg == 0);
cpu->n[thread] = (*reg >> 63);
setps(cpu, thread);
}
void dec_addr(struct sux *cpu, uint64_t adr, uint8_t thread) {
addr[adr]--;
}
void stt(struct sux* const cpu, uint8_t value) {
uint16_t tv = 0xFF50;
uint8_t t = addr[value];
cpu->crt |= t;
for (uint8_t i = 0; i < 7; i++)
if ((t >> i) & 1) {
uint64_t adr = (uint64_t)addr[tv+(8*i)]
| (uint64_t)addr[tv+1+(8*i)] << 8
| (uint64_t)addr[tv+2+(8*i)] << 16
| (uint64_t)addr[tv+3+(8*i)] << 24
| (uint64_t)addr[tv+4+(8*i)] << 32
| (uint64_t)addr[tv+5+(8*i)] << 40
| (uint64_t)addr[tv+6+(8*i)] << 48
| (uint64_t)addr[tv+7+(8*i)] << 56;
cpu->pc[i+1] = adr;
}
}
void ent(struct sux *cpu, uint8_t value) {
uint8_t t = addr[value];
cpu->crt &= ~t;
for (uint8_t i = 0; i < 7; i++)
if ((t >> i) & 1)
cpu->pc[i+1] = cpu->pc[0]+(i+1);
}
void ld(struct sux *cpu, uint64_t *reg, uint64_t adr, uint8_t thread, uint8_t regsize) {
*reg = (uint64_t)addr[adr];
if (regsize >= 2)
*reg += (uint64_t)addr[adr+1] << 8;
if (regsize >= 4) {
*reg += (uint64_t)addr[adr+2] << 16;
*reg += (uint64_t)addr[adr+3] << 24;
}
if (regsize >= 8) {
*reg += (uint64_t)addr[adr+4] << 32;
*reg += (uint64_t)addr[adr+5] << 40;
*reg += (uint64_t)addr[adr+6] << 48;
*reg += (uint64_t)addr[adr+7] << 56;
}
cpu->z[thread] = (*reg == 0);
cpu->n[thread] = (*reg >> 63);
setps(cpu, thread);
}
void st(struct sux *cpu, uint64_t *reg, uint64_t adr, uint8_t thread, uint8_t regsize) {
addr[adr] = *reg & 0xFF;
if (regsize >= 2)
addr[adr+1] = *reg >> 8;
if (regsize >= 4) {
addr[adr+2] = *reg >> 16;
addr[adr+3] = *reg >> 24;
}
if (regsize >= 8) {
addr[adr+4] = *reg >> 32;
addr[adr+5] = *reg >> 40;
addr[adr+6] = *reg >> 48;
addr[adr+7] = *reg >> 56;
}
}
void push(struct sux *cpu, uint8_t value) {
addr[STK_STADDR+cpu->sp] = value;
cpu->sp--;
addr[0xFF90] = cpu->sp & 0xFF;
addr[0xFF91] = cpu->sp >> 8;
}
uint8_t pull(struct sux *cpu) {
cpu->sp++;
addr[0xFF90] = cpu->sp & 0xFF;
addr[0xFF91] = cpu->sp >> 8;
return addr[STK_STADDR+cpu->sp];
}
void cmp_addr(struct sux *cpu, uint64_t reg, uint64_t adr, uint8_t thread, uint8_t regsize) {
uint64_t value;
value = (uint64_t)addr[adr];
if (regsize >= 2)
value += (uint64_t)addr[adr+1] << 8;
if (regsize >= 4) {
value += (uint64_t)addr[adr+2] << 16;
value += (uint64_t)addr[adr+3] << 24;
}
if (regsize >= 8) {
value += (uint64_t)addr[adr+4] << 32;
value += (uint64_t)addr[adr+5] << 40;
value += (uint64_t)addr[adr+6] << 48;
value += (uint64_t)addr[adr+7] << 56;
}
uint64_t sum = reg-value;
cpu->n[thread] = (sum & 0x8000000000000000) ? 1 : 0;
cpu->z[thread] = (sum == 0) ? 1 : 0;
cpu->c[thread] = (sum > value) ? 1 : 0;
setps(cpu, thread);
}
void cmp(struct sux *cpu, uint64_t reg1, uint64_t reg2, uint8_t thread) {
uint64_t sum = reg1-reg2;
cpu->n[thread] = (sum & 0x8000000000000000) ? 1 : 0;
cpu->z[thread] = (sum == 0) ? 1 : 0;
cpu->c[thread] = (sum > reg2) ? 1 : 0;
setps(cpu, thread);
}
void bfs(struct sux *cpu, uint8_t flag, uint64_t adr, uint8_t thread) {
if (flag)
cpu->pc[thread] = adr;
}
void bfc(struct sux *cpu, uint8_t flag, uint64_t adr, uint8_t thread) {
if (!flag)
cpu->pc[thread] = adr;
}
uint64_t immaddr(struct sux *cpu, uint8_t thread, uint8_t size) {
uint64_t adr = cpu->pc[thread];
cpu->pc[thread]+=size;
clk+=size;
return adr;
}
uint64_t absaddr(struct sux *cpu, uint8_t thread) {
uint64_t adr = (uint64_t)addr[cpu->pc[thread]]
| (uint64_t)addr[cpu->pc[thread]+1] << 8
| (uint64_t)addr[cpu->pc[thread]+2] << 16
| (uint64_t)addr[cpu->pc[thread]+3] << 24
| (uint64_t)addr[cpu->pc[thread]+4] << 32
| (uint64_t)addr[cpu->pc[thread]+5] << 40
| (uint64_t)addr[cpu->pc[thread]+6] << 48
| (uint64_t)addr[cpu->pc[thread]+7] << 56;
cpu->pc[thread]+=8;
clk++;
return adr;
}
uint32_t zeromtx(struct sux *cpu, uint8_t thread) {
uint32_t adr = (uint32_t)addr[cpu->pc[thread]]
| (uint32_t)addr[cpu->pc[thread]+1] << 8
| (uint32_t)addr[cpu->pc[thread]+2] << 16
| (uint32_t)addr[cpu->pc[thread]+3] << 24;
cpu->pc[thread]+=4;
clk++;
return adr;
}
uint32_t zeromx(struct sux *cpu, uint8_t thread) {
uint32_t adr = (uint32_t)addr[cpu->pc[thread]]
| (uint32_t)addr[cpu->pc[thread]+1] << 8
| (uint32_t)addr[cpu->pc[thread]+2] << 16
| (uint32_t)addr[cpu->pc[thread]+3] << 24;
adr += cpu->x[thread];
cpu->pc[thread]+=4;
clk++;
return adr;
}
uint32_t zeromy(struct sux *cpu, uint8_t thread) {
uint32_t adr = (uint32_t)addr[cpu->pc[thread]]
| (uint32_t)addr[cpu->pc[thread]+1] << 8
| (uint32_t)addr[cpu->pc[thread]+2] << 16
| (uint32_t)addr[cpu->pc[thread]+3] << 24;
adr += cpu->y[thread];
cpu->pc[thread]+=4;
clk++;
return adr;
}