summaryrefslogtreecommitdiff
path: root/sux.h
blob: 6dcda89b91e469b4d1c459802fcf912675bbda8a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
#include "opcode.h"
#include <pthread.h>
#include <ctype.h>
#include <string.h>
#include <limits.h>

#if bench
#include <sys/time.h>
#include <signal.h>
#include <math.h>
#endif
#include <curses.h>

#define THREADS	1
#define BENCH_INST 100000000 << (THREADS-1)
#define CTRL_ADDR 0x100
#define TX_ADDR 0x101
#define RX_ADDR 0x102
#define STEP_ADDR 0x110
#define CURSES_BACKSPACE 0x7F

#define copy64

extern uint8_t kbd_rdy;
extern uint8_t dbg_print_per_inst;

extern WINDOW *scr;
extern WINDOW *regs;
extern WINDOW *inst_win;
extern WINDOW *dbg_win;

#if debug
extern uint8_t subdbg;
#endif

static const uint64_t mem_size = 0x04000000; /* Size of address space. */

extern uint8_t step;
extern uint8_t end;

#define setflag(flag, bit) ((flag)) ? (cpu->ps.u8[thread] |= (bit)) : (cpu->ps.u8[thread] &= ~(bit))
#define getflag(bit) (cpu->ps.u8[thread] & (bit))

#define ORTHO_1CC(mne, cc) \
	mne##_R##cc: case mne##_M##cc

#define ORTHO_1OP(mne) \
	mne##_R: case mne##_M

#define ORTHO_2OP(mne) \
	mne##_RR: case mne##_RM: case mne##_MR: case mne##_MM

extern pthread_mutex_t mutex;
extern pthread_mutex_t main_mutex;
extern pthread_cond_t cond;
extern pthread_cond_t main_cond;

#if debug
extern void print_info(struct sux *cpu, WINDOW *w, uint8_t lines, uint8_t thread);
extern void print_regs(struct sux *cpu, WINDOW *w);
extern void disasm(struct sux *cpu, WINDOW *w, uint8_t lines, uint8_t opcode, uint8_t prefix, uint8_t ext_prefix, uint8_t prefix2, uint8_t *op_type, uint8_t *op_id, uint8_t thread);
#endif

/*#define KEYBUF_SIZE 0x40
char key[KEYBUF_SIZE];*/

extern int get_key(WINDOW *scr);
extern void io(uint64_t address, uint8_t rw);
extern void init_scr();


static /*inline*/ uint8_t get_addrsize(uint8_t prefix, uint8_t addrmode) {
	uint8_t id = (prefix & 0x0C) >> 2;
	switch (addrmode) {
		case ZM:
		case ZMX:
		case ZMY:
		case IND:
		case INDX:
		case INDY:
			switch (id) {
				case 2: return 5;
				case 3: return 3;
				case 1: return 2;
				case 0: return 0;
			}
			break;
		case ABS:
		case ABSX:
		case ABSY:
		case AIND:
		case AINDX:
		case AINDY:
			switch (id) {
				case 3: return 7;
				case 2: return 6;
				case 1: return 4;
				case 0: return 1;
			}
			break;
	}
	return 0xFF;
}

static /*inline*/ uint8_t get_ortho_addrsize(uint8_t prefix, uint8_t addrmode) {
	uint8_t type = IMM;
	switch (addrmode) {
		case MEM_ABS  :
		case MEM_ABSR :
		case MEM_AIND :
		case MEM_AINDR:
		case MEM_ARIND: type = ABS; break;
		case MEM_ZM   :
		case MEM_ZMR  :
		case MEM_IND  :
		case MEM_ZINDR:
		case MEM_ZRIND: type =  ZM; break;
	}
	return get_addrsize(prefix, type);
}

static int is_1op(uint8_t opcode) {
	switch (opcode) {
		case ORTHO_1OP(JMP):
		case ORTHO_1OP(JSR):
		case ORTHO_1OP(PSH):
		case ORTHO_1OP(PEA):
		case ORTHO_1OP(PUL):
		case ORTHO_1OP(SWP):
		case ORTHO_1OP(NOT):
		case ORTHO_1OP(NEG):
		case ORTHO_1OP(DEC):
		case ORTHO_1OP(INC):
		case ORTHO_1OP(CLZ):
		case ORTHO_1OP(CLO): return 1;
	}
	return 0;
}

static int is_1cc(uint8_t opcode) {
	switch (opcode) {
		case ORTHO_1CC(SET, NG):
		case ORTHO_1CC(SET, PO):
		case ORTHO_1CC(SET, CS):
		case ORTHO_1CC(SET, CC):
		case ORTHO_1CC(SET, EQ):
		case ORTHO_1CC(SET, NE):
		case ORTHO_1CC(SET, VS):
		case ORTHO_1CC(SET, VC): return 1;
	}
	return 0;
}

static /*inline*/ uint8_t isrw(uint8_t opcode, uint8_t ext_prefix) {
	if ((ext_prefix & 0xD) == 0xD) {
		switch (ext_prefix >> 4) {
			case 0x0:
				switch (opcode) {
					case STA_E :
					case STB_E :
					case STX_E :
					case STY_E :
					case STE_AB:
					case STE_Z :
					case STS_AB:
					case STS_Z :
					case STS_E :
					case STZ_AB:
					case STZ_Z :
					case STZ_E :
					case SNG_E :
					case SPO_E :
					case SCC_E :
					case SCS_E :
					case SEQ_E :
					case SNE_E :
					case INC_E :
					case DEC_E :
					case NOT_AB:
					case NOT_Z :
					case NOT_E :
					case SWP_AB:
					case SWP_Z :
					case SWP_E :
					case LLM_AB:
					case LLM_Z :
					case LLM_E :
					case LRM_AB:
					case LRM_Z :
					case LRM_E :
					case RLM_AB:
					case RLM_Z :
					case RLM_E :
					case RRM_AB:
					case RRM_Z :
					case RRM_E :
					case ARM_AB:
					case ARM_Z :
					case ARM_E : return 0;
					default    : return 1;
				}
		}
	} else {
		switch (opcode) {
			case STA_AB: /* STA Absolute. */
			case STA_Z: /* STA Zero Matrix. */
			case STA_ZX: /* STA Zero Matrix, Indexed with X. */
			case STA_ZY: /* STA Zero Matrix, Indexed with Y. */
			case STA_IN: /* STA Indirect. */
			case STA_IX: /* STA Indexed Indirect. */
			case STA_IY: /* STA Indirect Indexed. */
			case STY_AB: /* STY Absolute. */
			case STY_Z: /* STY Zero Matrix. */
			case STY_IN: /* STY Indirect. */
			case STX_AB: /* STX Absolute. */
			case STX_Z: /* STX Zero Matrix. */
			case STX_IN: /* STX Indirect. */
			case STB_AB: /* STB Absolute. */
			case STB_Z: /* STB Zero Matrix. */
			case STB_ZX: /* STB Zero Matrix, Indexed with X. */
			case STB_ZY: /* STB Zero Matrix, Indexed with Y. */
			case STB_IN: /* STB Indirect. */
			case STB_IX: /* STB Indexed Indirect. */
			case STB_IY: /* STB Indirect Indexed. */
			case INC_AB: /* INC Absolute. */
			case INC_Z: /* INC Zero Matrix. */
			case DEC_AB: /* DEC Absolute. */
			case DEC_Z: /* DEC Zero Matrix. */
				return 0; /* Writing. */
			default:
				return 1; /* Reading. */
		}
	}
}
static /*inline*/ uint8_t isread(uint8_t opcode, uint8_t ext_prefix) {
	if ((ext_prefix & 0xD) == 0xD) {
		switch (ext_prefix >> 4) {
			case 0x0:
				switch (opcode) {
					case LEA_AB :
                                        case LEA_AX :
                                        case LEA_AY :
                                        case LEA_AI :
                                        case LEA_AIX:
                                        case LEA_AIY:
                                        case LEA_Z  :
                                        case LEA_ZX :
                                        case LEA_ZY :
                                        case LEA_IN :
                                        case LEA_IX :
                                        case LEA_IY :
					case PEA_AB :
                                        case PEA_AX :
                                        case PEA_AY :
                                        case PEA_AI :
                                        case PEA_AIX:
                                        case PEA_AIY:
                                        case PEA_Z  :
                                        case PEA_ZX :
                                        case PEA_ZY :
                                        case PEA_IN :
                                        case PEA_IX :
                                        case PEA_IY :
                                        case LDS_IMM:
                                        case LDS_AB :
                                        case LDS_Z  :
                                        case LDS_E  :
                                        case LNG_IMM:
                                        case LNG_E  :
                                        case LPO_IMM:
                                        case LPO_E  :
                                        case LCC_IMM:
                                        case LCC_E  :
                                        case LCS_IMM:
                                        case LCS_E  :
                                        case LEQ_IMM:
                                        case LEQ_E  :
                                        case LNE_IMM:
                                        case LNE_E  :
					case LDA_E  :
					case LDB_E  :
					case LDX_E  :
					case LDY_E  :
					case JMP_E  :
					case JSR_E  : return 0;
					default     : return 1;
				}
		}
	} else {
		switch (opcode) {
			case LDA_IMM: /* LDA Immediate. */
			case LDA_AB: /* LDA Absolute. */
			case LDA_Z: /* LDA Zero Matrix. */
			case LDA_ZX: /* LDA Zero Matrix, Indexed with X. */
			case LDA_ZY: /* LDA Zero Matrix, Indexed with Y. */
			case LDA_IN: /* LDA Indirect. */
			case LDA_IX: /* LDA Indexed Indirect. */
			case LDA_IY: /* LDA Indirect Indexed. */
			case LDB_IMM: /* LDB Immediate. */
			case LDB_AB: /* LDB Absolute. */
			case LDB_Z: /* LDB Zero Matrix. */
			case LDB_ZX: /* LDB Zero Matrix, Indexed with X. */
			case LDB_ZY: /* LDB Zero Matrix, Indexed with Y. */
			case LDB_IN: /* LDB Indirect. */
			case LDB_IX: /* LDB Indexed Indirect. */
			case LDB_IY: /* LDB Indirect Indexed. */
			case LDY_IMM: /* LDY Immediate. */
			case LDY_AB: /* LDY Absolute. */
			case LDY_Z: /* LDY Zero Matrix. */
			case LDY_IN: /* LDY Indirect. */
			case LDX_IMM: /* LDX Immediate. */
			case LDX_AB: /* LDX Absolute. */
			case LDX_Z: /* LDX Zero Matrix. */
			case LDX_IN: /* LDX Indirect. */
			case JMP_AB: /* JMP Absolute. */
			case JMP_Z: /* JMP Zero Matrix. */
			case JMP_IN: /* JMP Indirect. */
			case JSR_IN: /* JSR Indirect. */
			case JSR_AB: /* Jump to SubRoutine. */
			case JSR_Z: /* JSR Zero Matrix. */
				return 0;
			default:
				return 1;
		}
	}
}

static int is_ind(uint8_t type) {
	switch (type) {
		case MEM_AIND :
		case MEM_IND  :
		case MEM_ARIND:
		case MEM_ZRIND:
		case MEM_AINDR:
		case MEM_ZINDR: return 1;
	}
	return 0;
}

static void *memcopy(void *restrict dst, const void *restrict src, unsigned int n) {
	#ifdef copy64
	uint64_t *d = dst;
	const uint64_t *s = src;
	unsigned int r = n % 8;
	n /= 8;
	#else
	uint8_t *d = dst;
	const uint8_t *s = src;
	#endif
	for (; n; *d++ = *s++, n--);
	#ifdef copy64
    	if (r) {
		uint64_t mask = (-(uint64_t)1 >> ((8 - r) * 8));
		*d = (*d & ~mask) | (*s & mask);
	}
	#endif
	return dst;
}


static /*inline*/ uint64_t read_value(struct sux *cpu, uint64_t reg, uint64_t address, uint8_t size, uint8_t inc_clk, uint8_t check_io) {
	#if getclk
	cpu->clk += inc_clk;
	#endif
	size = (size > 7) ? 7 : size;
	uint64_t mask = (-(uint64_t)1 >> ((7 - size) * 8));
	if (address < mem_size) {
		#if (IO || debug) && !branch
		#if keypoll
		pthread_mutex_lock(&mutex);
		#endif
		if (check_io) {
			io(address, 1);
		}
		#if keypoll
		pthread_mutex_unlock(&mutex);
		#endif
		#endif
		#if 1
		if (size < 7) {
			return (reg & ~mask) | (*(uint64_t *)(addr+address) & mask);
		} else {
			return *(uint64_t *)(addr+address);
		}
		#else
		return *(uint64_t *)memcopy(&reg, addr+address, size+1);
		#endif
	} else {
		return (size < 7) ? (reg & ~mask) | (mask) : mask;
	}
}

static /*inline*/ void write_value(struct sux *cpu, uint64_t value, uint64_t address, uint8_t size, uint8_t inc_clk, uint8_t check_io) {
	if (address < mem_size) {
		size = (size > 7) ? 7 : size;
		#if 1
		if (size < 7) {
			uint64_t mask = (-(uint64_t)1 >> ((7 - size) * 8));
			*(uint64_t *)(addr+address) = (*(uint64_t *)(addr+address) & ~mask) | (value & mask);
		} else {
			*(uint64_t *)(addr+address) = value;
		}
		#else
		memcopy(addr+address, &value, size+1);
		#endif
		#if (IO || debug) && !branch
		#if keypoll
		pthread_mutex_lock(&mutex);
		#endif
		if (check_io) {
			io(address, 0);
		}
		#if keypoll
		pthread_mutex_unlock(&mutex);
		#endif
		#endif
	}
	#if getclk
	cpu->clk += inc_clk;
	#endif
}

static /*inline*/ uint64_t offset_addr(struct sux *cpu, uint64_t offset, uint8_t size, uint8_t inc_clk, uint8_t prefix) {
	uint64_t of;
	switch (prefix >> 6) {
		case 1: of = cpu->sp; break;
		case 2: of = cpu->pc; break;
	}
	#if getclk
	cpu->clk += inc_clk;
	#endif
	switch (size) {
		case 0: return of + (int8_t )offset;
		case 1: return of + (int16_t)offset;
		case 2:
		case 3: return of + (int32_t)offset;
		case 4:
		case 5:
		case 6:
		case 7: return of + (int64_t)offset;
	}
}

static /*inline*/ uint64_t imm_addr(struct sux *cpu) {
	return cpu->pc;
}

static /*inline*/ uint64_t read_addr(struct sux *cpu, uint8_t prefix, uint8_t inc_clk, uint8_t type, uint8_t inc_pc) {
	uint64_t address;
	uint8_t size = get_addrsize(prefix, type);
	if (prefix >> 6) {
		address = offset_addr(cpu, read_value(cpu, 0, cpu->pc, size, inc_clk, 0), size, inc_clk, prefix);
	} else {
		address = read_value(cpu, 0, cpu->pc, size, inc_clk, 0);
	}
	if (inc_pc) {
		cpu->pc += size+1;
	}
	return address;
}

static /*inline*/ uint64_t idx_addr(struct sux *cpu, uint8_t prefix, uint8_t inc_clk, uint8_t type, uint8_t inc_pc, uint64_t idx_reg) {
	#if getclk
	cpu->clk += inc_clk;
	#endif
	return read_addr(cpu, prefix, inc_clk, type, inc_pc) + idx_reg;
}

static /*inline*/ uint64_t ind_addr(struct sux *cpu, uint8_t prefix, uint8_t inc_clk, uint8_t type, uint8_t inc_pc) {
	return read_value(cpu, 0, read_addr(cpu, prefix, inc_clk, type, inc_pc), 7, inc_clk, 0);
}

static /*inline*/ uint64_t ind_idx_addr(struct sux *cpu, uint8_t prefix, uint8_t inc_clk, uint8_t type, uint8_t inc_pc, uint64_t idx_reg, uint8_t pre_idx) {
	#if getclk
	cpu->clk += inc_clk;
	#endif
	if (pre_idx) {
		return read_value(cpu, 0, read_addr(cpu, prefix, inc_clk, type, inc_pc)+idx_reg, 7, inc_clk, 0);
	} else {
		return ind_addr(cpu, prefix, inc_clk, type, inc_pc) + idx_reg;
	}
}

static /*inline*/ uint64_t rel_addr(struct sux *cpu, uint8_t prefix, uint8_t inc_clk, uint8_t inc_pc) {
	uint8_t rs   = (prefix >> 4) & 3;
	uint8_t size = (1 << rs) - 1;
	uint64_t offset = read_value(cpu, 0, cpu->pc, size, inc_clk, 0);
	uint64_t address;
	if (inc_pc) {
		cpu->pc += (size + 1);
	}
	#if getclk
	cpu->clk += inc_clk;
	#endif
	switch (rs) {
		default: return cpu->pc + (int8_t )offset;
		case 1 : return cpu->pc + (int16_t)offset;
		case 2 : return cpu->pc + (int32_t)offset;
		case 3 : return cpu->pc + (int64_t)offset;
	}
}

static /*inline*/ uint64_t get_addr(struct sux *cpu, uint8_t opcode, uint8_t prefix, uint8_t ext_prefix, uint8_t inc_pc, uint8_t inc_clk, uint8_t thread) {
	uint64_t address = 0;
	uint8_t type;
	if ((ext_prefix & 0xF) == 0xD) {
		switch (ext_prefix >> 4) {
			case 0x0: type = ext_optype[opcode]; break;
		}
	} else {
		type = optype[opcode];
	}
	switch (type) {
		case BREG:
		case IMPL:
			break;
		case EIND: address = cpu->e; break;
		case IMM:
			address = imm_addr(cpu);
			switch (opcode) {
				case LSL_IMM:
				case LSR_IMM:
				case ROL_IMM:
				case ROR_IMM:
				case ASR_IMM:
					if ((ext_prefix & 0xD) != 0xD) {
						if (inc_pc) {
							++cpu->pc;
						}
						break;
					}
					/* Falls Through. */
				default:
					if (inc_pc) {
						cpu->pc+=(1 << ((prefix >> 4) & 3));
					}
					break;
			}
			break;
		case ZM   : return read_addr(cpu, prefix, inc_clk, ZM, inc_pc);
		case ZMX  : return idx_addr(cpu, prefix, inc_clk, ZM, inc_pc, cpu->x);
		case ZMY  : return idx_addr(cpu, prefix, inc_clk, ZM, inc_pc, cpu->y);
		case IND  : return ind_addr(cpu, prefix, inc_clk, ZM, inc_pc);
		case INDX : return ind_idx_addr(cpu, prefix, inc_clk, ZM, inc_pc, cpu->x, 1);
		case INDY : return ind_idx_addr(cpu, prefix, inc_clk, ZM, inc_pc, cpu->y, 0);
		case ABS  : return read_addr(cpu, prefix, inc_clk, ABS, inc_pc);
		case ABSX : return idx_addr(cpu, prefix, inc_clk, ABS, inc_pc, cpu->x);
		case ABSY : return idx_addr(cpu, prefix, inc_clk, ABS, inc_pc, cpu->y);
		case AIND : return ind_addr(cpu, prefix, inc_clk, ABS, inc_pc);
		case AINDX: return ind_idx_addr(cpu, prefix, inc_clk, ABS, inc_pc, cpu->x, 1);
		case AINDY: return ind_idx_addr(cpu, prefix, inc_clk, ABS, inc_pc, cpu->y, 0);
		case REL  : return rel_addr(cpu, prefix, inc_clk, /**/ inc_pc);

	}
	return address;
}

static /*inline*/ uint64_t ortho_ind_addr(struct sux *cpu, uint8_t prefix, uint64_t address, uint8_t inc_clk) {
	return read_value(cpu, 0, address, 7, inc_clk, 0);
}

static /*inline*/ uint64_t ortho_ind_idx_addr(struct sux *cpu, uint8_t prefix, uint64_t address, uint8_t inc_clk, uint64_t idx_reg, uint8_t pre_idx) {
	if (pre_idx) {
		return read_value(cpu, 0, address+idx_reg, 7, inc_clk, 0);
	} else {
		return ortho_ind_addr(cpu, prefix, address, inc_clk) + idx_reg;
	}
}

static /*inline*/ uint64_t get_ortho_addr(struct sux *cpu, uint8_t opcode, uint8_t prefix, uint64_t address, operand *op, uint64_t *value, uint8_t *op_type, uint8_t *op_id, uint8_t inc_pc, uint8_t inc_clk, uint8_t thread) {
	uint64_t tmp_addr = address;

	int num_ops = 1 + !(is_1op(opcode) || is_1cc(opcode));

	for (int i = 0; i < num_ops; i++) {
		union reg tmp;
		tmp.u64 = 0;
		op[i].type = op_type[i];
		op[i].id = op_id[i];
		op[i].value = 0;
		op[i].rind[0] = 0xFF;
		op[i].rind[1] = 0xFF;
		if (op[i].type) {
			int inst_size = 0;
			int addr_size = get_ortho_addrsize(prefix, op[i].id);
			int rs = (1 << (prefix >> 4));
			int is_rind = (op[i].id != MEM_ABS && op[i].id != MEM_ZM && op[i].id != MEM_AIND && op[i].id != MEM_IND && op[i].id != MEM_IMM);
			if (is_rind) {
				inst_size = (op[i].id == MEM_SIB)+1;
				tmp.u64 = read_value(cpu, 0, tmp_addr, inst_size-1, 0, 0);
				tmp_addr += inst_size;
				op[i].rind[0] = (tmp.u8[inst_size-1] & 0x0F);
				op[i].rind[1] = (tmp.u8[inst_size-1] >> 4);
				if (op[i].rind[1] == op[i].rind[0]) {
					op[i].rind[1] = 0xFF;
				}
				op[i].scale = (inst_size == 2) ? tmp.u8[0] : 0;
			}
			if (addr_size != 0xFF) {
				inst_size = addr_size+1;
				op[i].value = read_value(cpu, 0, tmp_addr, inst_size-1, inc_clk, 0);
				value[i] = op[i].value;
				tmp_addr += inst_size;
			}
			if (rs && op[i].id == MEM_IMM) {
				value[i] = tmp_addr;
				tmp_addr += rs;
			}
			uint64_t tmp_val = 0;
			if (is_rind) {
				for (int j = 0; j < 2 && op[i].rind[j] != 0xFF; j++) {
					int is_index = ((!j && op[i].rind[1] == 0xFF) || j);
					uint64_t reg;
					switch (op[i].rind[j]) {
						case REG_A  : reg =   cpu->a;	break;
						case REG_B  : reg =   cpu->b;	break;
						case REG_X  : reg =   cpu->x;	break;
						case REG_Y  : reg =   cpu->y;	break;
						case REG_E  : reg =   cpu->e;	break;
						case REG_C  : reg =   cpu->c;	break;
						case REG_D  : reg =   cpu->d;	break;
						case REG_S  : reg =   cpu->s;	break;
						case REG_F  : reg =   cpu->f;	break;
						case REG_SP : reg =  cpu->sp;	break;
						case REG_BP : reg =  cpu->bp;	break;
						case REG_R11: reg = cpu->r11;	break;
						case REG_R12: reg = cpu->r12;	break;
						case REG_R13: reg = cpu->r13;	break;
						case REG_R14: reg = cpu->r14;	break;
						case REG_R15: reg = cpu->r15;	break;
					}

					reg *= (is_index && op[i].id == MEM_SIB) ? op[i].scale+1 : 1;
					tmp_val += reg;
				}
				if (addr_size != 0xFF) {
					switch (addr_size) {
						case 0: value[i] = (int8_t )value[i]; break;
						case 1: value[i] = (int16_t)value[i]; break;
						case 2:
						case 3: value[i] = (int32_t)value[i]; break;
						case 4:
						case 5:
						case 6:
						case 7: value[i] = (int64_t)value[i]; break;
					}
				}
				value[i] += (!is_ind(op[i].id)) ? tmp_val : 0;
				#if getclk
				cpu->clk += inc_clk;
				#endif
			}
			if (is_ind(op[i].id)) {
				uint8_t pre_idx = 0;
				uint8_t type = op[i].id;
				switch (type) {
					case MEM_AIND :
					case MEM_IND  : value[i] = ortho_ind_addr(cpu, prefix, value[i], inc_clk); break;
					case MEM_ARIND:
					case MEM_ZRIND: pre_idx = 1; /* Falls through. */
					case MEM_AINDR:
					case MEM_ZINDR: value[i] = ortho_ind_idx_addr(cpu, prefix, value[i], inc_clk, tmp_val, pre_idx); break;
				}
			}
		}
	}
	address = (inc_pc) ? tmp_addr : address;
	return address;
}


static /*inline*/ uint64_t adc(struct sux *cpu, uint64_t reg, uint64_t value, uint8_t carry, uint8_t size, uint8_t thread) {
	size = (size > 8) ? 8 : size;
	uint8_t msb = size*8;
	uint64_t sum = reg+value+carry;
	setflag(sum == 0, Z);
	setflag(sum >> (msb-1), N);
	setflag(((reg^value) >> (msb-1)) && ((reg^sum) >> (msb-1)), V);
	setflag((sum < value), C);
	return sum;
}

static /*inline*/ uint64_t transfer(struct sux *cpu, uint64_t src, uint64_t value, uint8_t thread) {
	setflag(src == 0, Z);
	setflag(src >> 63, N);
	return src;
}

static /*inline*/ void push(struct sux *cpu, uint64_t value, uint8_t size, uint8_t thread) {
	write_value(cpu, value, cpu->sp-size, size, 1, 0);
	cpu->sp -= size+1;
}

static /*inline*/ uint64_t pull(struct sux *cpu, uint8_t size, uint8_t thread) {
	uint64_t value = read_value(cpu, 0, cpu->sp+1, size, 1, 0);
	cpu->sp += size+1;
	return value;
}

static /*inline*/ uint64_t and(struct sux *cpu, uint64_t reg, uint64_t value, uint8_t size, uint8_t thread) {
	size = (size > 8) ? 8 : size;
	uint8_t msb = size*8;
	reg &= value;
	setflag(reg == 0, Z);
	setflag(reg >> (msb-1), N);
	return reg;
}
static /*inline*/ uint64_t or(struct sux *cpu, uint64_t reg, uint64_t value, uint8_t size, uint8_t thread) {
	size = (size > 8) ? 8 : size;
	uint8_t msb = size*8;
	reg |= value;
	setflag(reg == 0, Z);
	setflag(reg >> (msb-1), N);
	return reg;
}
static /*inline*/ uint64_t xor(struct sux *cpu, uint64_t reg, uint64_t value, uint8_t size, uint8_t thread) {
	size = (size > 8) ? 8 : size;
	uint8_t msb = size*8;
	reg ^= value;
	setflag(reg == 0, Z);
	setflag(reg >> (msb-1), N);
	return reg;
}

static /*inline*/ uint64_t lsl(struct sux *cpu, uint64_t reg, uint64_t value, uint8_t size, uint8_t thread) {
	size = (size > 8) ? 8 : size;
	uint8_t msb = size*8;
	uint64_t sum = (value < msb) ? reg << value : 0;
	setflag(sum == 0, Z);
	setflag(sum >> (msb-1), N);
	setflag(reg >> (msb-value), C);
	return sum;
}

static /*inline*/ uint64_t lsr(struct sux *cpu, uint64_t reg, uint64_t value, uint8_t size, uint8_t thread) {
	size = (size > 8) ? 8 : size;
	uint8_t msb = size*8;
	uint64_t sum = (value < msb) ? reg >> value : 0;
	setflag(sum == 0, Z);
	setflag(sum >> (msb-1), N);
	setflag(reg & 1, C);
	return sum;
}

static /*inline*/ uint64_t asr(struct sux *cpu, uint64_t reg, uint64_t value, uint8_t size, uint8_t thread) {
	size = (size > 8) ? 8 : size;
	uint8_t msb = size*8;
	uint8_t sign = reg >> (msb-1);
	uint64_t sum = (value < msb) ? (reg >> value) | ((uint64_t)sign << (msb-1)) : 0;
	setflag(sum == 0, Z);
	setflag(sum >> (msb-1), N);
	setflag(reg & 1, C);
	return sum;
}

static /*inline*/ uint64_t rol(struct sux *cpu, uint64_t reg, uint64_t value, uint8_t size, uint8_t thread) {
	size = (size > 8) ? 8 : size;
	uint8_t msb = size*8;
	uint64_t sum;
	uint64_t c = getflag(C);
	switch (value & 0x3F) {
		case 0 : return reg;
		case 1 : sum = (reg << 1) | (c & 1); break;
		default: sum = (reg << value) | (c << (value-1)) | (reg >> ((msb+1)-value)); break;
	}
	setflag(sum == 0, Z);
	setflag(sum >> (msb-1), N);
	setflag((reg >> (msb-value)) & 1, C);
	return sum;
}

static /*inline*/ uint64_t ror(struct sux *cpu, uint64_t reg, uint64_t value, uint8_t size, uint8_t thread) {
	size = (size > 8) ? 8 : size;
	uint8_t msb = size*8;
	uint64_t sum;
	uint64_t c = getflag(C);
	switch (value & 0x3F) {
		case 0 : return reg;
		case 1 : sum = (reg >> 1) | (c << (msb-1)); break;
		default: sum = (reg >> value) | (c << (msb-value)) | (reg << ((msb+1)-value)); break;
	}
	setflag(sum == 0, Z);
	setflag(sum >> (msb-1), N);
	setflag((reg >> (value-1)) & 1, C);
	return sum;
}

static /*inline*/ uint64_t mul(struct sux *cpu, uint64_t reg, uint64_t value, uint8_t size, uint8_t thread) {
	size = (size > 8) ? 8 : size;
	uint8_t msb = size*8;
	uint64_t sum = reg*value;
	setflag(sum == 0, Z);
	setflag(sum >> (msb-1), N);
	setflag(!((reg^value) >> (msb-1)) && ((reg^sum) >> (msb-1)), V);
	return sum;
}

static /*inline*/ uint64_t divd(struct sux *cpu, uint64_t reg, uint64_t value, uint64_t *rem, uint8_t size, uint8_t thread) {
	size = (size > 8) ? 8 : size;
	uint8_t msb = size*8;
	uint64_t sum = reg/value;
	*rem = reg % value;
	setflag(sum == 0, Z);
	setflag(sum >> (msb-1), N);
	return sum;
}

static /*inline*/ void cmp(struct sux *cpu, uint64_t value, uint64_t reg, uint8_t thread) {
	uint64_t sum = reg-value;
	setflag(sum >> 63, N);
	setflag(((reg^value) >> 63) && ((reg^sum) >> 63), V);
	setflag(sum == 0, Z);
	setflag(reg >= value, C);
}

/* Increment, or Decrement register. */
static /*inline*/ uint64_t idr(struct sux *cpu, uint64_t reg, uint8_t inc, uint8_t thread) {
	reg += (inc) ? 1 : -1;
	setflag(reg == 0, Z);
	setflag(reg >> 63, N);
	return reg;
}

static /*inline*/ uint64_t lbcnt(struct sux *cpu, uint64_t value, uint8_t bit, uint8_t size, uint8_t thread) {
	size = (size > 8) ? 8 : size;
	uint8_t msb = size*8;
	if ((!bit && !value) || (bit && value == -1)) {
		return msb;
	}
	uint64_t j = 0;
	for (int i = msb-1; ((value >> i) & 1) == bit; i--, j++);
	setflag(j == 0, Z);
	return j;
}

static /*inline*/ void bit_test(struct sux *cpu, uint64_t reg, uint64_t value, uint8_t thread) {
	setflag((value >> 7) & 1, N);
	setflag((value >> 6) & 1, V);
	setflag((value & reg) == 0, Z);
}

static /*inline*/ uint64_t swap(struct sux *cpu, uint64_t reg, uint8_t size, uint8_t thread) {
	size = (size > 7) ? 7 : size;
	uint8_t half = ((size-1)*8) >> 1;
	uint64_t mask = (-(uint64_t)1 >> ((7 - size) * 8));
	uint64_t lo_mask = mask >> half;
	uint64_t hi_mask = (mask << half) & mask;
	return (((reg >> half) & lo_mask) | ((reg << half) & hi_mask));

}

static /*inline*/ uint64_t popcnt(struct sux *cpu, uint64_t value, uint8_t thread) {
	uint64_t count = 0;
	for (; value; count++, value &= value - 1);
	return count;
}

/* Increment, or Decrement memory. */
static /*inline*/ void idm(struct sux *cpu, uint64_t address, uint8_t prefix, uint8_t inc, uint8_t thread) {
	uint8_t size = (1 << ((prefix >> 4) & 3))-1;
	uint64_t value;
	value = read_value(cpu, 0, address, size, 1, 0);
	value += (inc) ? 1 : -1;
	uint8_t sign = 0;
	switch ((prefix >> 4) & 3) {
		default: sign =  7; break;
		case  1: sign = 15; break;
		case  2: sign = 31; break;
		case  3: sign = 63; break;
	}
	setflag(value == 0, Z);
	setflag(value >> sign, N);
	write_value(cpu, value, address, size, 1, 1);
}

static /*inline*/ void bitshft_mem(struct sux *cpu, uint8_t shft_type, uint64_t shft_cnt, uint64_t address, uint8_t prefix, uint8_t thread) {
	uint8_t size = (1 << ((prefix >> 4) & 3))-1;
	uint64_t value = read_value(cpu, 0, address, size, 1, 0);
	switch (shft_type) {
		case 0: value = lsl(cpu, value, shft_cnt, size+1, thread); break;
		case 1: value = lsr(cpu, value, shft_cnt, size+1, thread); break;
		case 2: value = rol(cpu, value, shft_cnt, size+1, thread); break;
		case 3: value = ror(cpu, value, shft_cnt, size+1, thread); break;
		case 4: value = asr(cpu, value, shft_cnt, size+1, thread); break;
	}
	write_value(cpu, value, address, size, 1, 1);
}

static /*inline*/ void not_mem(struct sux *cpu, uint64_t address, uint8_t prefix, uint8_t thread) {
	uint8_t size = (1 << ((prefix >> 4) & 3))-1;
	write_value(cpu, ~read_value(cpu, 0, address, size, 1, 0), address, size, 1, 1);
}

static /*inline*/ void lbcnt_mem(struct sux *cpu, uint64_t address, uint8_t bit, uint8_t size, uint8_t thread) {
	uint64_t value = read_value(cpu, 0, address, size, 1, 0);
	write_value(cpu, lbcnt(cpu, value, bit, size, thread), address, size, 1, 1);
}

static /*inline*/ void swap_mem(struct sux *cpu, uint64_t address, uint8_t size, uint8_t thread) {
	uint64_t value = read_value(cpu, 0, address, size, 1, 0);
	write_value(cpu, swap(cpu, value, size, thread), address, size, 1, 1);
}

static /*inline*/ uint64_t mem_move(struct sux *cpu, uint64_t n, uint64_t dst, uint64_t src, uint8_t rep, uint8_t size, uint8_t thread) {
	if (!rep) {
		uint64_t value = read_value(cpu, 0, src, size, 1, 1);
		write_value(cpu, value, dst, size, 1, 1);
		return n-(size+1);
	} else {
		if (src < mem_size && dst < mem_size) {
			memcopy(addr+dst, addr+src, n*(size+1));
		}
		return 0;
	}
}

static /*inline*/ uint64_t load(struct sux *cpu, uint64_t reg, uint64_t address, uint8_t size, uint8_t thread) {
	uint64_t value = read_value(cpu, reg, address, size, 1, 1);
	setflag(value == 0, Z);
	setflag(value >> 63, N);
	return value;
}

static /*inline*/ void store(struct sux *cpu, uint64_t address, uint64_t reg, uint8_t prefix, uint8_t thread) {
	uint8_t size = (1 << ((prefix >> 4) & 3))-1;
	write_value(cpu, reg, address, size, 1, 1);
}

static /*inline*/ uint64_t mov(struct sux *cpu, uint64_t src, uint64_t size, uint8_t thread) {
	size = (size > 7) ? 7 : size;
	uint8_t msb = (size+1)*8;
	uint64_t dst = 0;
	uint64_t mask = (-(uint64_t)1 >> ((7 - size) * 8));
	if (size < 7) {
		dst = (dst & ~mask) | (src & mask);
	} else {
		dst = src;
	}
	setflag(dst == 0, Z);
	setflag(dst >> (msb-1), N);
	return dst;
}

static /*inline*/ uint64_t cmov(struct sux *cpu, uint64_t src, uint64_t size, uint64_t dst, int flag, int *allow_io, uint8_t thread) {
	*allow_io = flag;
	return (flag) ? mov(cpu, src, size, thread) : dst;
}

static /*inline*/ uint64_t set(struct sux *cpu, uint8_t flag, uint8_t thread) {
	setflag(flag == 0, Z);
	return (flag != 0);
}

static /*inline*/ uint64_t inc_dec(struct sux *cpu, uint64_t value, uint8_t size, uint8_t inc, uint8_t thread) {
	size = (size > 8) ? 8 : size;
	uint8_t msb = size*8;
	value += (inc) ? 1 : -1;
	setflag(value == 0, Z);
	setflag(value >> (msb-1), N);
	return value;
}

static /*inline*/ uint64_t imul(struct sux *cpu, uint64_t dst, uint64_t value, uint8_t size, uint8_t thread) {
	size = (size > 8) ? 8 : size;
	uint8_t msb = size*8;
	int64_t sum = dst*value;
	setflag(sum == 0, Z);
	setflag(sum >> (msb-1), N);
	setflag(!((dst^value) >> (msb-1)) && ((dst^sum) >> (msb-1)), V);
	return sum;
}

static /*inline*/ uint64_t idiv(struct sux *cpu, uint64_t dst, uint64_t value, uint64_t *rem, uint8_t size, uint8_t thread) {
	size = (size > 8) ? 8 : size;
	uint8_t msb = size*8;
	int64_t sum = dst/value;
	*rem = dst % value;
	setflag(sum == 0, Z);
	setflag(sum >> (msb-1), N);
	return sum;
}

static /*inline*/ uint64_t neg(struct sux *cpu, uint64_t value, uint8_t size, uint8_t thread) {
	size = (size > 8) ? 8 : size;
	uint8_t msb = size*8;
	value = -value;
	setflag(value == 0, Z);
	setflag(value >> (msb-1), N);
	return value;
}

static /*inline*/ void exec_ortho_inst(struct sux *cpu, uint8_t opcode, uint8_t prefix, uint8_t size, uint8_t *op_type, uint8_t *op_id, uint8_t thread) {
	uint64_t dst = 0;
	uint64_t src = 0;
	uint64_t rem = 0;
	uint64_t address[2] = {0, 0};
	int isdiv = 0;
	int allow_io[2] = {1, 1};
	int is_lea = ((opcode & ~0x18) == LEA_RR);
	int is_write = 1;
	operand op[2];
	cpu->pc = get_ortho_addr(cpu, opcode, prefix, cpu->pc, op, address, op_type, op_id, 1, 1, thread);
	for (int i = 0; i < 2; i++) {
		if (op[i].type) {
			if (is_lea) {
				switch (op[i].id) {
					case MEM_RIND:
					case MEM_ABS :
					case MEM_ZM  :
					case MEM_ABSR:
					case MEM_ZMR :
					case MEM_SIB :
					case MEM_IMM : allow_io[i] = 0; break;
				}
			} else {
				allow_io[i] = (op[i].id != MEM_IMM);
			}
		}
	}
	if (op[1].type) {
		src = read_value(cpu, 0, address[1], size, 1, allow_io[1]);
	} else {
		switch (op[1].id) {
			case REG_A  : src = cpu->a;	break;
			case REG_B  : src = cpu->b;	break;
			case REG_X  : src = cpu->x;	break;
			case REG_Y  : src = cpu->y;	break;
			case REG_E  : src = cpu->e;	break;
			case REG_C  : src = cpu->c;	break;
			case REG_D  : src = cpu->d;	break;
			case REG_S  : src = cpu->s;	break;
			case REG_F  : src = cpu->f;	break;
			case REG_SP : src = cpu->sp;	break;
			case REG_BP : src = cpu->bp;	break;
			case REG_R11: src = cpu->r11;	break;
			case REG_R12: src = cpu->r12;	break;
			case REG_R13: src = cpu->r13;	break;
			case REG_R14: src = cpu->r14;	break;
			case REG_R15: src = cpu->r15;	break;
		}
	}
	if (op[0].type) {
		if (op[0].id != MEM_IMM) {
			dst = read_value(cpu, 0, address[0], size, 1, allow_io[0]);
		}
	} else {
		switch (op[0].id) {
			case REG_A  : dst = cpu->a;	break;
			case REG_B  : dst = cpu->b;	break;
			case REG_X  : dst = cpu->x;	break;
			case REG_Y  : dst = cpu->y;	break;
			case REG_E  : dst = cpu->e;	break;
			case REG_C  : dst = cpu->c;	break;
			case REG_D  : dst = cpu->d;	break;
			case REG_S  : dst = cpu->s;	break;
			case REG_F  : dst = cpu->f;	break;
			case REG_SP : dst = cpu->sp;	break;
			case REG_BP : dst = cpu->bp;	break;
			case REG_R11: dst = cpu->r11;	break;
			case REG_R12: dst = cpu->r12;	break;
			case REG_R13: dst = cpu->r13;	break;
			case REG_R14: dst = cpu->r14;	break;
			case REG_R15: dst = cpu->r15;	break;
		}
	}
	switch (opcode) {
		case ORTHO_2OP(MNG): dst = cmov(cpu, src, (op[0].type) ? size : 7, dst,  getflag(N), &allow_io[0], thread); break;
		case ORTHO_2OP(MPO): dst = cmov(cpu, src, (op[0].type) ? size : 7, dst, !getflag(N), &allow_io[0], thread); break;
		case ORTHO_2OP(MCS): dst = cmov(cpu, src, (op[0].type) ? size : 7, dst,  getflag(C), &allow_io[0], thread); break;
		case ORTHO_2OP(MCC): dst = cmov(cpu, src, (op[0].type) ? size : 7, dst, !getflag(C), &allow_io[0], thread); break;
		case ORTHO_2OP(MEQ): dst = cmov(cpu, src, (op[0].type) ? size : 7, dst,  getflag(Z), &allow_io[0], thread); break;
		case ORTHO_2OP(MNE): dst = cmov(cpu, src, (op[0].type) ? size : 7, dst, !getflag(Z), &allow_io[0], thread); break;
		case ORTHO_2OP(MVS): dst = cmov(cpu, src, (op[0].type) ? size : 7, dst,  getflag(V), &allow_io[0], thread); break;
		case ORTHO_2OP(MVC): dst = cmov(cpu, src, (op[0].type) ? size : 7, dst, !getflag(V), &allow_io[0], thread); break;
		case ORTHO_2OP(MOV): dst = mov(cpu, src, (op[0].type) ? size : 7, thread); break;
		case ORTHO_2OP(ADC): dst = adc(cpu, dst,  src, getflag(C), (op[0].type) ? size+1 : 8, thread); break;
		case ORTHO_2OP(SBC): dst = adc(cpu, dst, ~src, getflag(C), (op[0].type) ? size+1 : 8, thread); break;
		case ORTHO_2OP(ADD): dst = adc(cpu, dst,  src, 0, (op[0].type) ? size+1 : 8, thread); break;
		case ORTHO_2OP(SUB): dst = adc(cpu, dst, ~src, 1, (op[0].type) ? size+1 : 8, thread); break;
		case ORTHO_2OP(AND): dst = and(cpu, dst,  src, (op[0].type) ? size+1 : 8, thread); break;
		case ORTHO_2OP(OR ): dst =  or(cpu, dst,  src, (op[0].type) ? size+1 : 8, thread); break;
		case ORTHO_2OP(XOR): dst = xor(cpu, dst,  src, (op[0].type) ? size+1 : 8, thread); break;
		case ORTHO_2OP(LSL): dst = lsl(cpu, dst,  src, (op[0].type) ? size+1 : 8, thread); break;
		case ORTHO_2OP(LSR): dst = lsr(cpu, dst,  src, (op[0].type) ? size+1 : 8, thread); break;
		case ORTHO_2OP(ROL): dst = rol(cpu, dst,  src, (op[0].type) ? size+1 : 8, thread); break;
		case ORTHO_2OP(ROR): dst = ror(cpu, dst,  src, (op[0].type) ? size+1 : 8, thread); break;
		case ORTHO_2OP(ASR): dst = asr(cpu, dst,  src, (op[0].type) ? size+1 : 8, thread); break;
		case ORTHO_2OP(MUL): dst = mul(cpu, dst, src, (op[0].type) ? size+1 : 8, thread); break;
		case ORTHO_2OP(DIV): dst = divd(cpu, dst, src, &rem, (op[0].type) ? size+1 : 8, thread); isdiv = 1; break;
		case ORTHO_2OP(CMP): adc(cpu, dst, ~src, 1, (op[0].type) ? size+1 : 8, thread); is_write = 0; break;
		case ORTHO_2OP(PCN): dst = popcnt(cpu, src, thread); break;
		case ORTHO_2OP(IML): dst = imul(cpu, dst, src, (op[0].type) ? size+1 : 8, thread); break;
		case ORTHO_2OP(IDV): dst = idiv(cpu, dst, src, &rem, (op[0].type) ? size+1 : 8, thread); isdiv = 1; break;
		case ORTHO_2OP(LEA):
			do {
				uint64_t tmp_addr;
				uint64_t mask;
				if (op[1].type) {
					uint8_t addr_size = get_ortho_addrsize(prefix, op[1].id);
					size = (!size) ? 7 : size;
					tmp_addr = address[1];
				} else {
					tmp_addr = src;
				}
				mask = (-(uint64_t)1 >> ((7 - size) * 8));
				dst = (tmp_addr & mask);
			} while (0);
			break;
		case ORTHO_1OP(PEA):
			do {
				uint64_t tmp_addr = (op[0].type) ? address[0] : dst;
				push(cpu, tmp_addr, 7, thread);
				is_write = 0;
			} while (0);
			break;
		case ORTHO_1OP(JSR): push(cpu, cpu->pc, (size) ? size : 7, thread); /* Falls Through. */
		case ORTHO_1OP(JMP): cpu->pc = (op[0].type) ? address[0] : dst; break;
		case ORTHO_1OP(INC): dst = inc_dec(cpu, dst, (op[0].type) ? size+1 : 8, 1, thread); break;
		case ORTHO_1OP(DEC): dst = inc_dec(cpu, dst, (op[0].type) ? size+1 : 8, 0, thread); break;
		case ORTHO_1OP(PSH): push(cpu, dst, size, thread); is_write = 0; break;
		case ORTHO_1OP(PUL): dst = pull(cpu, size, thread); break;
		case ORTHO_1OP(NOT): dst = ~dst; break;
		case ORTHO_1OP(CLZ): dst = lbcnt(cpu, src, 0, size, thread); break;
		case ORTHO_1OP(CLO): dst = lbcnt(cpu, src, 1, size, thread); break;
		case ORTHO_1OP(SWP): dst = swap(cpu, dst, size, thread); break;
		case ORTHO_1OP(NEG): dst = neg(cpu, dst, size, thread); break;
		case ORTHO_1CC(SET, NG): dst = set(cpu,  getflag(N), thread); break;
		case ORTHO_1CC(SET, PO): dst = set(cpu, !getflag(N), thread); break;
		case ORTHO_1CC(SET, CS): dst = set(cpu,  getflag(C), thread); break;
		case ORTHO_1CC(SET, CC): dst = set(cpu, !getflag(C), thread); break;
		case ORTHO_1CC(SET, EQ): dst = set(cpu,  getflag(Z), thread); break;
		case ORTHO_1CC(SET, NE): dst = set(cpu, !getflag(Z), thread); break;
		case ORTHO_1CC(SET, VS): dst = set(cpu,  getflag(V), thread); break;
		case ORTHO_1CC(SET, VC): dst = set(cpu, !getflag(V), thread); break;

	}
	if (is_write) {
		if (op[0].type) {
			if (op[0].id != MEM_IMM) {
				write_value(cpu, dst, address[0], size, 1, allow_io[0]);
			}
		} else {
			switch (op[0].id) {
				case REG_A  : cpu->a	= dst;	break;
				case REG_B  : cpu->b	= dst;	break;
				case REG_X  : cpu->x	= dst;	break;
				case REG_Y  : cpu->y	= dst;	break;
				case REG_E  : cpu->e	= dst;	break;
				case REG_C  : cpu->c	= dst;	break;
				case REG_D  : cpu->d	= dst;	break;
				case REG_S  : cpu->s	= dst;	break;
				case REG_F  : cpu->f	= dst;	break;
				case REG_SP : cpu->sp	= dst;	break;
				case REG_BP : cpu->bp	= dst;	break;
				case REG_R11: cpu->r11	= dst;	break;
				case REG_R12: cpu->r12	= dst;	break;
				case REG_R13: cpu->r13	= dst;	break;
				case REG_R14: cpu->r14	= dst;	break;
				case REG_R15: cpu->r15	= dst;	break;
			}
		}
	}
	if (isdiv) {
		if (op[1].type) {
			if (op[1].id != MEM_IMM) {
				write_value(cpu, src, address[1], size, 1, 1);
			}
		} else {
			switch (op[1].id) {
				case REG_A  : cpu->a	= rem;	break;
				case REG_B  : cpu->b	= rem;	break;
				case REG_X  : cpu->x	= rem;	break;
				case REG_Y  : cpu->y	= rem;	break;
				case REG_E  : cpu->e	= rem;	break;
				case REG_C  : cpu->c	= rem;	break;
				case REG_D  : cpu->d	= rem;	break;
				case REG_S  : cpu->s	= rem;	break;
				case REG_F  : cpu->f	= rem;	break;
				case REG_SP : cpu->sp	= rem;	break;
				case REG_BP : cpu->bp	= rem;	break;
				case REG_R11: cpu->r11	= rem;	break;
				case REG_R12: cpu->r12	= rem;	break;
				case REG_R13: cpu->r13	= rem;	break;
				case REG_R14: cpu->r14	= rem;	break;
				case REG_R15: cpu->r15	= rem;	break;
			}
		}
	}
}

static /*inline*/ void exec_ext_inst(struct sux *cpu, uint8_t opcode, uint8_t prefix, uint64_t value, uint64_t address, uint8_t size, uint8_t thread) {
	uint8_t addr_size = get_addrsize(prefix, ext_optype[opcode]);
	uint8_t tmp = 0;
	switch (opcode) {
		case LEA_AB : /* LEA Absolute. */
		case LEA_AX : /* LEA Absolute, Indexed with X. */
		case LEA_AY : /* LEA Absolute, Indexed with Y. */
		case LEA_AI : /* LEA Absolute Indirect. */
		case LEA_AIX: /* LEA Absolute Indexed Idirect. */
		case LEA_AIY: /* LEA Absolute Indirect Indexed. */
		case LEA_Z  : /* LEA Zero Matrix. */
		case LEA_ZX : /* LEA Zero Matrix, Indexed with X. */
		case LEA_ZY : /* LEA Zero Matrix, Indexed with Y. */
		case LEA_IN : /* LEA Indirect. */
		case LEA_IX : /* LEA Indexed Idirect. */
		case LEA_IY : /* LEA Indirect Indexed. */
			do {
				size = (!size) ? addr_size : size;
				uint64_t mask = (-(uint64_t)1 >> ((7 - size) * 8));
				cpu->e = (address & mask);
				//cpu->e = load(cpu, address, 0, size, thread);
			} while (0);
			break;
		case PEA_AB : /* PEA Absolute. */
		case PEA_AX : /* PEA Absolute, Indexed with X. */
		case PEA_AY : /* PEA Absolute, Indexed with Y. */
		case PEA_AI : /* PEA Absolute Indirect. */
		case PEA_AIX: /* PEA Absolute Indexed Idirect. */
		case PEA_AIY: /* PEA Absolute Indirect Indexed. */
		case PEA_Z  : /* PEA Zero Matrix. */
		case PEA_ZX : /* PEA Zero Matrix, Indexed with X. */
		case PEA_ZY : /* PEA Zero Matrix, Indexed with Y. */
		case PEA_IN : /* PEA Indirect. */
		case PEA_IX : /* PEA Indexed Idirect. */
		case PEA_IY : /* PEA Indirect Indexed. */
			push(cpu, address, 7, thread);
			break;
		case ADD_IMM: /* ADD Immediate. */
		case ADD_AB : /* ADD Absolute. */
		case ADD_Z  : /* ADD Zero Matrix. */
		case ADD_E  : /* ADD E Indirect. */
			cpu->a = adc(cpu, cpu->a, value, 0, 8, thread);
			break;
		case SUB_IMM: /* SUB Immediate. */
		case SUB_AB : /* SUB Absolute. */
		case SUB_Z  : /* SUB Zero Matrix. */
		case SUB_E  : /* SUB E Indirect. */
			cpu->a = adc(cpu, cpu->a, ~value, 1, 8, thread);
			break;
		case ADE_IMM: /* ADE Immediate. */
		case ADE_AB : /* ADE Absolute. */
		case ADE_Z  : /* ADE Zero Matrix. */
			cpu->e = adc(cpu, cpu->e, value, 0, 8, thread);
			break;
		case SBE_IMM: /* SBE Immediate. */
		case SBE_AB : /* SBE Absolute. */
		case SBE_Z  : /* SBE Zero Matrix. */
			cpu->e = adc(cpu, cpu->e, ~value, 1, 8, thread);
			break;
		case ADS_IMM: /* ADS Immediate. */
		case ADS_AB : /* ADS Absolute. */
		case ADS_Z  : /* ADS Zero Matrix. */
		case ADS_E  : /* ADS E Indirect. */
			cpu->sp = adc(cpu, cpu->sp, value, 0, 8, thread);
			break;
		case SBS_IMM: /* SBS Immediate. */
		case SBS_AB : /* SBS Absolute. */
		case SBS_Z  : /* SBS Zero Matrix. */
		case SBS_E  : /* SBS E Indirect. */
			cpu->sp = adc(cpu, cpu->sp, ~value, 1, 8, thread);
			break;
		case NOT_A : /* NOT Accumulator. */
			cpu->a = ~cpu->a;
			break;
		case NOT_AB: /* NOT Absolute. */
		case NOT_Z : /* NOT Zero Matrix. */
		case NOT_E : /* NOT E Indirect. */
			not_mem(cpu, address, prefix, thread);
			break;
		case LLM_AB: /* LLM Absolute. */
		case LLM_Z : /* LLM Zero Matrix. */
		case LLM_E : /* LLM E Indirect. */
		case LRM_AB: /* LRM Absolute. */
		case LRM_Z : /* LRM Zero Matrix. */
		case LRM_E : /* LRM E Indirect. */
		case RLM_AB: /* RLM Absolute. */
		case RLM_Z : /* RLM Zero Matrix. */
		case RLM_E : /* RLM E Indirect. */
		case RRM_AB: /* RRM Absolute. */
		case RRM_Z : /* RRM Zero Matrix. */
		case RRM_E : /* RRM E Indirect. */
		case ARM_AB: /* ARM Absolute. */
		case ARM_Z : /* ARM Zero Matrix. */
		case ARM_E : /* ARM E Indirect. */
			switch (opcode) {
				case LLM_AB:
				case LLM_Z :
				case LLM_E : tmp = 0; break;
				case LRM_AB:
				case LRM_Z :
				case LRM_E : tmp = 1; break;
				case RLM_AB:
				case RLM_Z :
				case RLM_E : tmp = 2; break;
				case RRM_AB:
				case RRM_Z :
				case RRM_E : tmp = 3; break;
				case ARM_AB:
				case ARM_Z :
				case ARM_E : tmp = 4; break;
			}
			bitshft_mem(cpu, tmp, cpu->b, address, prefix, thread);
			break;
		case PHE_IMP: push(cpu, cpu->e, size, thread); break; /* PusH E register. */
		case PLE_IMP: cpu->e = pull(cpu, size, thread); break; /* PuLl E register. */
		case CPE_IMM: /* CPE Immediate. */
		case CPE_AB : /* CPE Absolute. */
		case CPE_Z  : /* CPE Zero Matrix. */
			adc(cpu, cpu->e, ~value, 1, 8, thread);
			break;
		case ICE_AB : /* ICE Absolute. */
		case ICE_Z  : /* ICE Zero Matrix. */
		case ICE_E  : /* ICE E Indirect. */
			break;
		case LDS_IMM: /* LDS Immediate. */
		case LDS_AB : /* LDS Absolute. */
		case LDS_Z  : /* LDS Zero Matrix. */
		case LDS_E  : /* LDS E Indirect. */
			cpu->sp = load(cpu, cpu->sp, address, size, thread);
			break;
		case DEE_IMP: cpu->e = idr(cpu, cpu->e, 0, thread); break; /* DEcrement E register. */
		case INE_IMP: cpu->e = idr(cpu, cpu->e, 1, thread); break; /* INcrement E register. */
		case DES_IMP: cpu->sp = idr(cpu, cpu->sp, 0, thread); break; /* DEcrement Stack pointer. */
		case INS_IMP: cpu->sp = idr(cpu, cpu->sp, 1, thread); break; /* INcrement Stack pointer. */
		case STS_AB: /* STS Absolute. */
		case STS_Z : /* STS Zero Matrix. */
		case STS_E : /* STS E Indirect. */
			store(cpu, address, cpu->sp, prefix, thread);
			break;
		case STE_AB: /* STE Absolute. */
		case STE_Z : /* STE Zero Matrix. */
			store(cpu, address, cpu->sp, prefix, thread);
			break;
		case STZ_AB: /* STZ Absolute. */
		case STZ_Z : /* STZ Zero Matrix. */
		case STZ_E : /* STZ E Indirect. */
			store(cpu, address, 0, prefix, thread);
			break;
		case SCO_IMM: /* SCO Immediate. */
		case SCO_AB : /* SCO Absolute. */
		case SCO_Z  : /* SCO Zero Matrix. */
		case SCO_E  : /* SCO E Indirect. */
			break;
		case ECO_IMM: /* ECO Immediate. */
		case ECO_AB : /* ECO Absolute. */
		case ECO_Z  : /* ECO Zero Matrix. */
		case ECO_E  : /* ECO E Indirect. */
			break;
		case CLZ_AB: /* CLZ Absolute. */
		case CLZ_Z : /* CLZ Zero Matrix. */
		case CLZ_E : /* CLZ E Indirect. */
			cpu->a = lbcnt(cpu, value, 0, size, thread);
			break;
		case CLO_AB: /* CLO Absolute. */
		case CLO_Z : /* CLO Zero Matrix. */
		case CLO_E : /* CLO E Indirect. */
			cpu->a = lbcnt(cpu, value, 1, size, thread);
			break;
		case BIT_AB: /* BIT Absolute. */
		case BIT_Z : /* BIT Zero Matrix. */
		case BIT_E : /* BIT E Indirect. */
			bit_test(cpu, cpu->a, value, thread);
			break;
		case MMV_IMP: /* Memory MoVe. */
			cpu->b = mem_move(cpu, cpu->b, cpu->x, cpu->y, 1, size, thread);
			break;
		case SWP_A : /* SWaP lower half, with upper half. */
			cpu->a = swap(cpu, cpu->a, size, thread);
			break;
		case SWP_AB: /* SWP Absolute. */
		case SWP_Z : /* SWP Zero Matrix. */
		case SWP_E : /* SWP E Indirect. */
			swap_mem(cpu, address, size, thread);
			break;
		case PCN_AB: /* PCN Absolute. */
		case PCN_Z : /* PCN Zero Matrix. */
		case PCN_E : /* PCN E Indirect. */
			cpu->a = popcnt(cpu, value, thread);
			break;
		case REP_REL: /* REP Relative. */
			if (cpu->b != 0) {
				cpu->b--;
				cpu->pc = address;
			}
			break;
		case REQ_REL: /* REQ Relative. */
			if (cpu->b != 0 && getflag(Z)) {
				cpu->b--;
				cpu->pc = address;
			}
			break;
		case RNE_REL: /* RNE Relative. */
			if (cpu->b != 0 && !getflag(Z)) {
				cpu->b--;
				cpu->pc = address;
			}
			break;
		case LNG_IMM: /* LNG Immediate. */
		case LNG_E  : /* LNG E Indirect. */
			if (getflag(N)) {
				cpu->a = load(cpu, cpu->a, address, size, thread);
			}
			break;
		case LPO_IMM: /* LPO Immediate. */
		case LPO_E  : /* LPO E Indirect. */
			if (!getflag(N)) {
				cpu->a = load(cpu, cpu->a, address, size, thread);
			}
			break;
		case LCS_IMM: /* LCS Immediate. */
		case LCS_E  : /* LCS E Indirect. */
			if (getflag(C)) {
				cpu->a = load(cpu, cpu->a, address, size, thread);
			}
			break;
		case LCC_IMM: /* LCC Immediate. */
		case LCC_E  : /* LCC E Indirect. */
			if (!getflag(C)) {
				cpu->a = load(cpu, cpu->a, address, size, thread);
			}
			break;
		case LEQ_IMM: /* LEQ Immediate. */
		case LEQ_E  : /* LEQ E Indirect. */
			if (getflag(Z)) {
				cpu->a = load(cpu, cpu->a, address, size, thread);
			}
			break;
		case LNE_IMM: /* LNE Immediate. */
		case LNE_E  : /* LNE E Indirect. */
			if (!getflag(Z)) {
				cpu->a = load(cpu, cpu->a, address, size, thread);
			}
			break;
		case SNG_E  : /* SNG E Indirect. */
			if (getflag(N)) {
				store(cpu, address, cpu->a, prefix, thread);
			}
			break;
		case SPO_E  : /* SPO E Indirect. */
			if (!getflag(N)) {
				store(cpu, address, cpu->a, prefix, thread);
			}
			break;
		case SCS_E  : /* SCS E Indirect. */
			if (getflag(C)) {
				store(cpu, address, cpu->a, prefix, thread);
			}
			break;
		case SCC_E  : /* SCC E Indirect. */
			if (!getflag(C)) {
				store(cpu, address, cpu->a, prefix, thread);
			}
			break;
		case SEQ_E  : /* SEQ E Indirect. */
			if (getflag(Z)) {
				store(cpu, address, cpu->a, prefix, thread);
			}
			break;
		case SNE_E  : /* SNE E Indirect. */
			if (!getflag(Z)) {
				store(cpu, address, cpu->a, prefix, thread);
			}
			break;

	}
}

static /*inline*/ void exec_base_inst(struct sux *cpu, uint8_t opcode, uint8_t prefix, uint64_t value, uint64_t address, uint8_t size, uint8_t thread) {
	uint64_t *rem = 0;
	switch (opcode) {
		case CPS_IMP: /* Clear Processor Status. */
			cpu->ps.u8[thread] = 0;
			break;
		case ADC_B: /* ADC B register. */
			value = cpu->b; /* Falls Through. */
		case ADC_IMM:  /* ADC Immediate. */
		case ADC_AB: /* ADC Absolute. */
		case ADC_Z: /* ADC Zero Matrix. */
			cpu->a = adc(cpu, cpu->a, value, getflag(C), 8, thread);
			break;
		case PHP_IMP: push(cpu, cpu->ps.u8[thread],    0, thread); break; /* PusH Processor status to stack. */
		case PHA_IMP: push(cpu, cpu->a            , size, thread); break; /* PusH Accumulator to stack. */
		case PHB_IMP: push(cpu, cpu->b            , size, thread); break; /* PusH B register to stack. */
		case PHY_IMP: push(cpu, cpu->y            , size, thread); break; /* PusH Y register to stack. */
		case PHX_IMP: push(cpu, cpu->x            , size, thread); break; /* PusH X register to stack. */
		case TAY_IMP: cpu->y  = transfer(cpu, cpu->a , value, thread); break; /* Transfer Accumulator to Y. */
		case TAX_IMP: cpu->x  = transfer(cpu, cpu->a , value, thread); break; /* Transfer Accumulator to Y. */
		case TYX_IMP: cpu->x  = transfer(cpu, cpu->y , value, thread); break; /* Transfer Y to X. */
		case TYA_IMP: cpu->a  = transfer(cpu, cpu->y , value, thread); break; /* Transfer Y to Accumulator. */
		case TXA_IMP: cpu->a  = transfer(cpu, cpu->x , value, thread); break; /* Transfer X to Accumulator. */
		case TXY_IMP: cpu->y  = transfer(cpu, cpu->x , value, thread); break; /* Transfer X to Y. */
		case TAB_IMP: cpu->b  = transfer(cpu, cpu->a , value, thread); break; /* Transfer Accumulator to B. */
		case TSX_IMP: cpu->x  = transfer(cpu, cpu->sp, value, thread); break; /* Transfer Stack pointer to X. */
		case TBA_IMP: cpu->a  = transfer(cpu, cpu->b , value, thread); break; /* Transfer B to Accumulator. */
		case TXS_IMP: cpu->sp = transfer(cpu, cpu->x , value, thread); break; /* Transfer X to Stack pointer. */
		case BRA_REL: /* BRA Relative. */
		case JMP_AB: /* JMP Absolute. */
		case JMP_Z: /* JMP Zero Matrix. */
		case JMP_IN: /* JMP Indirect. */
			cpu->pc = address;
			break;
		case SBC_B: /* SBC B register. */
			value = cpu->b; /* Falls Through. */
		case SBC_IMM: /* SBC Immediate. */
		case SBC_AB: /* SBC Absolute. */
		case SBC_Z: /* SBC Zero Matrix. */
			cpu->a = adc(cpu, cpu->a, ~value, getflag(C), 8, thread);
			break;
		case PLP_IMP: cpu->ps.u8[thread] = pull(cpu,    0, thread); break; /* PuLl Processor status from stack. */
		case PLA_IMP: cpu->a             = pull(cpu, size, thread); break; /* PuLl Accumulator from stack. */
		case PLB_IMP: cpu->b             = pull(cpu, size, thread); break; /* PuLl B register from stack. */
		case PLY_IMP: cpu->y             = pull(cpu, size, thread); break; /* PuLl Y register from stack. */
		case PLX_IMP: cpu->x             = pull(cpu, size, thread); break; /* PuLl X register from stack. */
			break;
		case AND_B: /* AND B register. */
			value = cpu->b; /* Falls Through. */
		case AND_IMM: /* AND Immediate. */
		case AND_AB: /* AND Absolute. */
		case AND_Z: /* AND Zero Matrix. */
			cpu->a = and(cpu, cpu->a, value, 8, thread);
			break;
		case BPO_REL: /* BPO Relative. */
			if (!getflag(N)) {
				cpu->pc = address;
			}
			break;
		case ORA_B: /* ORA B register. */
			value = cpu->b; /* Falls Through. */
		case ORA_IMM: /* ORA Immediate. */
		case ORA_AB: /* ORA Absolute. */
		case ORA_Z: /* ORA Zero Matrix. */
			cpu->a = or(cpu, cpu->a, value, 8, thread);
			break;
		case SEI_IMP: /* SEt Interrupt. */
			setflag(1, I);
			break;
		case BNG_REL: /* BNG Relative. */
			if (getflag(N)) {
				cpu->pc = address;
			}
			break;
		case XOR_B: /* XOR B register. */
			value = cpu->b; /* Falls Through. */
		case XOR_IMM: /* XOR Immediate. */
		case XOR_AB: /* XOR Absolute. */
		case XOR_Z: /* XOR Zero Matrix. */
			cpu->a = xor(cpu, cpu->a, value, 8, thread);
			break;
		case CLI_IMP: /* CLear Interrupt. */
			setflag(0, I);
			break;
		case BCS_REL: /* BCS Relative. */
			if (getflag(C)) {
				cpu->pc = address;
			}
			break;
		case LSL_B: /* LSL B register. */
			value = cpu->b; /* Falls Through. */
		case LSL_IMM: /* LSL Immediate. */
		case LSL_AB: /* LSL Absolute. */
		case LSL_Z: /* LSL Zero Matrix. */
			cpu->a = lsl(cpu, cpu->a, value, 8, thread);
			break;
		case SEC_IMP: /* SEt Carry flag.*/
			setflag(1, C);
			break;
		case STA_AB: /* STA Absolute. */
		case STA_Z: /* STA Zero Matrix. */
		case STA_ZX: /* STA Zero Matrix, Indexed with X. */
		case STA_ZY: /* STA Zero Matrix, Indexed with Y. */
		case STA_IN: /* STA Indirect. */
		case STA_IX: /* STA Indexed Indirect. */
		case STA_IY: /* STA Indirect Indexed. */
			store(cpu, address, cpu->a, prefix, thread);
			break;
		case STY_AB: /* STY Absolute. */
		case STY_Z: /* STY Zero Matrix. */
		case STY_IN: /* STY Indirect. */
			store(cpu, address, cpu->y, prefix, thread);
			break;
		case STX_AB: /* STX Absolute. */
		case STX_Z: /* STX Zero Matrix. */
		case STX_IN: /* STX Indirect. */
			store(cpu, address, cpu->x, prefix, thread);
			break;
		case STB_AB: /* STB Absolute. */
		case STB_Z: /* STB Zero Matrix. */
		case STB_ZX: /* STB Zero Matrix, Indexed with X. */
		case STB_ZY: /* STB Zero Matrix, Indexed with Y. */
		case STB_IN: /* STB Indirect. */
		case STB_IX: /* STB Indexed Indirect. */
		case STB_IY: /* STB Indirect Indexed. */
			store(cpu, address, cpu->b, prefix, thread);
			break;
		case BCC_REL: /* BCC Relative. */
			if (!getflag(C)) {
				cpu->pc = address;
			}
			break;
		case LSR_B: /* LSR B register. */
			value = cpu->b; /* Falls Through. */
		case LSR_IMM: /* LSR Immediate. */
		case LSR_AB: /* LSR Absolute. */
		case LSR_Z: /* LSR Zero Matrix. */
			cpu->a = lsr(cpu, cpu->a, value, 8, thread);
			break;
		case ASR_B: /* ASR B register. */
			value = cpu->b; /* Falls Through. */
		case ASR_IMM: /* ASR Immediate. */
		case ASR_AB: /* ASR Absolute. */
		case ASR_Z: /* ASR Zero Matrix. */
			cpu->a = asr(cpu, cpu->a, value, 8, thread);
			break;
		case CLC_IMP: /* CLear Carry flag. */
			setflag(0, C);
			break;
		case LDB_IMM: /* LDB Immediate. */
		case LDB_AB: /* LDB Absolute. */
		case LDB_Z: /* LDB Zero Matrix. */
		case LDB_ZX: /* LDB Zero Matrix, Indexed with X. */
		case LDB_ZY: /* LDB Zero Matrix, Indexed with Y. */
		case LDB_IN: /* LDB Indirect. */
		case LDB_IX: /* LDB Indexed Indirect. */
		case LDB_IY: /* LDB Indirect Indexed. */
			cpu->b = load(cpu, cpu->b, address, size, thread);
			break;
		case LDA_IMM: /* LDA Immediate. */
		case LDA_AB: /* LDA Absolute. */
		case LDA_Z: /* LDA Zero Matrix. */
		case LDA_ZX: /* LDA Zero Matrix, Indexed with X. */
		case LDA_ZY: /* LDA Zero Matrix, Indexed with Y. */
		case LDA_IN: /* LDA Indirect. */
		case LDA_IX: /* LDA Indexed Indirect. */
		case LDA_IY: /* LDA Indirect Indexed. */
			cpu->a = load(cpu, cpu->a, address, size, thread);
			break;
		case LDY_IMM: /* LDY Immediate. */
		case LDY_AB: /* LDY Absolute. */
		case LDY_Z: /* LDY Zero Matrix. */
		case LDY_IN: /* LDY Indirect. */
			cpu->y = load(cpu, cpu->y, address, size, thread);
			break;
		case LDX_IMM: /* LDX Immediate. */
		case LDX_AB: /* LDX Absolute. */
		case LDX_Z: /* LDX Zero Matrix. */
		case LDX_IN: /* LDX Indirect. */
			cpu->x = load(cpu, cpu->x, address, size, thread);
			break;
		case BEQ_REL: /* BEQ Relative. */
			if (getflag(Z)) {
				cpu->pc = address;
			}
			break;
		case ROL_B: /* ROL B register. */
			value = cpu->b; /* Falls Through. */
		case ROL_IMM: /* ROL Immediate. */
		case ROL_AB: /* ROL Absolute. */
		case ROL_Z: /* ROL Zero Matrix. */
			cpu->a = rol(cpu, cpu->a, value, 8, thread);
			break;
		case BNE_REL: /* BNE Relative. */
			if (!getflag(Z)) {
				cpu->pc = address;
			}
			break;
		case ROR_B: /* ROR B register. */
			value = cpu->b; /* Falls Through. */
		case ROR_IMM: /* ROR Immediate. */
		case ROR_AB: /* ROR Absolute. */
		case ROR_Z: /* ROR Zero Matrix. */
			cpu->a = ror(cpu, cpu->a, value, 8, thread);
			break;
		case BVS_REL: /* BVS Relative. */
			if (getflag(V)) {
				cpu->pc = address;
			}
			break;
		case MUL_B: /* MUL B register. */
			value = cpu->b; /* Falls Through. */
		case MUL_IMM: /* MUL Immediate. */
		case MUL_AB: /* MUL Absolute. */
		case MUL_Z: /* MUL Zero Matrix. */
			cpu->a = mul(cpu, cpu->a, value, 8, thread);
			break;
		case BVC_REL: /* BVC Relative. */
			if (!getflag(V)) {
				cpu->pc = address;
			}
			break;
		case DIV_B: /* DIV B register. */
		case DIV_IMM: /* DIV Immediate. */
		case DIV_AB: /* DIV Absolute. */
		case DIV_Z: /* DIV Zero Matrix. */
			rem = (opcode != DIV_B) ? &cpu->b : &cpu->x;
			cpu->a = divd(cpu, cpu->a, value, rem, 8, thread);
			break;
		case CLV_IMP: /* CLear oVerflow flag. */
			setflag(0, V);
			break;
		case CPB_IMM: /* CPB Immediate. */
		case CPB_AB: /* CPB Absolute. */
		case CPB_Z: /* CPB Zero Matrix. */
		case CPB_IN: /* CPB Indirect. */
		case CPB_IX: /* CPB Indexed Indirect. */
		case CPB_IY: /* CPB Indirect Indexed. */
			adc(cpu, cpu->b, ~value, 1, 8, thread);
			break;
		case CMP_B: /* CMP B register. */
			value = cpu->b; /* Falls Through. */
		case CMP_IMM: /* CMP Immediate. */
		case CMP_AB: /* CMP Absolute. */
		case CMP_Z: /* CMP Zero Matrix. */
		case CMP_IN: /* CMP Indirect. */
		case CMP_IX: /* CMP Indexed Indirect. */
		case CMP_IY: /* CMP Indirect Indexed. */
			adc(cpu, cpu->a, ~value, 1, 8, thread);
			break;
		case CPY_IMM: /* CPY Immediate. */
		case CPY_AB: /* CPY Absolute. */
		case CPY_Z: /* CPY Zero Matrix. */
			adc(cpu, cpu->y, ~value, 1, 8, thread);
			break;
		case CPX_IMM: /* CPX Immediate. */
		case CPX_AB: /* CPX Absolute. */
		case CPX_Z: /* CPX Zero Matrix. */
			adc(cpu, cpu->x, ~value, 1, 8, thread);
			break;
		case INC_IMP: cpu->a = idr(cpu, cpu->a, 1, thread); break;
		case INB_IMP: cpu->b = idr(cpu, cpu->b, 1, thread); break;
		case INY_IMP: cpu->y = idr(cpu, cpu->y, 1, thread); break;
		case INX_IMP: cpu->x = idr(cpu, cpu->x, 1, thread); break;
		case DEC_IMP: cpu->a = idr(cpu, cpu->a, 0, thread); break;
		case DEB_IMP: cpu->b = idr(cpu, cpu->b, 0, thread); break;
		case DEY_IMP: cpu->y = idr(cpu, cpu->y, 0, thread); break;
		case DEX_IMP: cpu->x = idr(cpu, cpu->x, 0, thread); break;
		case JSR_IN: /* JSR Indirect. */
		case JSR_AB: /* Jump to SubRoutine. */
		case JSR_Z: /* JSR Zero Matrix. */
			push(cpu, cpu->pc, (size) ? size : 7, thread);
			cpu->pc = address;
			break;
		case INC_AB: /* INC Absolute. */
		case INC_Z: /* INC Zero Matrix. */
			idm(cpu, address, prefix, 1, thread);
			break;
		case NOP_IMP: /* No OPeration. */
			break;
		case RTI_IMP: /* ReTurn from Interrupt routine. */
			cpu->ps.u8[thread] = pull(cpu, 0, thread);
			size = 0;
		case RTS_IMP: /* ReTurn from Subroutine. */
			cpu->pc = pull(cpu, (size) ? size : 7, thread);
			break;
		case DEC_AB: /* DEC Absolute. */
		case DEC_Z: /* DEC Zero Matrix. */
			idm(cpu, address, prefix, 0, thread);
			break;
		case BRK_IMP: /* BReaK. */
		case WAI_IMP: /* WAit for Interrupt. */
			if (opcode == WAI_IMP) {
				pthread_mutex_lock(&main_mutex);
				pthread_cond_signal(&main_cond);
				pthread_mutex_unlock(&main_mutex);
				pthread_mutex_lock(&mutex);
				pthread_cond_wait(&cond, &mutex);
				pthread_mutex_unlock(&mutex);
			}
			push(cpu, cpu->pc, 7, thread);
			push(cpu, cpu->ps.u8[thread], 0, thread);
			setflag(1, I);
			value = read_value(cpu, 0, (opcode == BRK) ? 0xFFE0 : 0xFFA0, 7, 1, 0);
			if (opcode == WAI_IMP) {
				kbd_rdy &= (uint8_t)~(1 << thread);
			}
			cpu->pc = value;
		default:
			break;
	}
}

#if 0
#define t(w8, w7, w6, w5, w4, w3, w2, w1, w0, code) \
	do { \
		const uint32_t mask[9] = {w0, w1, w2, w3, w4, w5, w6, w7, w8}; \
		if (mask[o8] & o8m) { code } \
	} while (0);
#else
#define t(w8, w7, w6, w5, w4, w3, w2, w1, w0) \
	if ((const uint32_t [9]){w0, w1, w2, w3, w4, w5, w6, w7, w8}[o8] & o8m)
#endif

#define inst(op, ext) \
static /*inline*/ void inst_##op(struct sux *cpu, uint8_t prefix, uint8_t size, int inc_pc, int inc_clk, uint8_t thread) { \
	const unsigned int o8 = 0x##op / 32, o8m = 1 << (0x##op % 32); \
	const uint8_t rs = 1 << ((prefix >> 4) & 3); \
	uint64_t addr = 0, idx = 0, tmp = 0, tmp2 = 0; \
	uint64_t dummy = 0, *reg = &dummy; \
	int pre_idx = 0, mem_type = ZM; \
	/* Decode Address. */ \
	t(1, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000) { addr = 0xFFA0; } /* NMI Vector. */ \
	t(2, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000) { addr = 0xFFC0; } /* Reset Vector. */ \
	t(4, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000) { addr = 0xFFE0; } /* IRQ Vector. */ \
	t(0, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000200, 0x00000000, 0x00000000, 0x00000000) { addr = 0xFFF0; } /* BRK Vector. */ \
	t(7, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000200, 0x00000000, 0x00000000, 0x00000000) { prefix = 0x0F; } /* Interrupts. */ \
	t(7, 0x00060000, 0x00060000, 0x00160000, 0x00160000, 0x01160200, 0x01160000, 0x01170000, 0x01170000) { mem_type = ABS; } /* Interrupts, and absolute. */ \
	t(0, 0x01000100, 0x01000100, 0x04000400, 0x00000000, 0x00000000, 0x40004000, 0x40004000, 0x00000000) { idx = cpu->x; } /* Register index. */ \
	t(0, 0x06400200, 0x06400400, 0x00000000, 0x00000000, 0x00000000, 0x10000000, 0x10000000, 0x00000000) { idx = cpu->y; } \
	t(7, 0x00460160, 0x00460160, 0x00160160, 0x00160160, 0x01161360, 0x11165161, 0x11175161, 0x01171160) { addr = read_addr(cpu, prefix, inc_clk, mem_type, inc_pc) + idx; } /* Read address from memory. */ \
	t(0, 0x01000000, 0x01000000, 0x04000400, 0x00000000, 0x00000000, 0x40000000, 0x40000000, 0x00000000) { pre_idx = 1; } /* Set pre-index flag, for indexed indirect. */ \
	t(0, 0x07101210, 0x17101410, 0x14001400, 0x10001000, 0x10000000, 0x40000000, 0x40000000, 0x00000000) { addr = ind_idx_addr(cpu, prefix, inc_clk, ZM, inc_pc, idx, pre_idx); } /* Indirect addressing, with indexing. */ \
	/* Load Source. */ \
	t(0, 0x02220022, 0x03760576, 0x00220432, 0x00661076, 0x00660066, 0x00660466, 0x51665466, 0x00660466) { reg = &cpu->a; } /* Most operations use the accumulator as an operand */ \
	t(0, 0x05540354, 0x04000000, 0x04000200, 0x02000000, 0x10000000, 0x51005000, 0x00000000, 0x04100110) { reg = &cpu->b; } /* ldb, stb, cpb, inb, deb, tba */ \
	t(0, 0x00000000, 0x00001200, 0x12000000, 0x00001000, 0x05101110, 0x04000000, 0x00100110, 0x00000000) { reg = &cpu->x; } /* ldx, stx, cpx, inx, dex, txa, txy */ \
	t(0, 0x00000000, 0x00000000, 0x00041044, 0x10001200, 0x02000400, 0x00100110, 0x04000000, 0x01001000) { reg = &cpu->y; } /* ldy, sty, cpy, iny, dey, tya, tyx */ \
	t(0, 0x00000000, 0x00000000, 0x00000000, 0x00000400, 0x00000000, 0x00000000, 0x00000000, 0x00000000) { reg = &cpu->sp; } /* tsx */ \
	t(7, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00004200, 0x00000200, 0x02000200, 0x02000201) { reg = &cpu->ps[thread]; } /* php, test/set/clear flags, and interrupts. */ \
	t(0, 0x07561370, 0x17561570, 0x14161560, 0x10161160, 0x11161160, 0x51165161, 0x51175161, 0x01171160) { tmp = read_value(cpu, 0, addr, rs, inc_clk, 1); } /* Read data from memory. */ \
	t(0, 0x00000006, 0x00000006, 0x00000006, 0x00000006, 0x00000016, 0x00000016, 0x00000016, 0x00000016) { tmp = read_value(cpu, 0, cpu->pc, rs, inc_clk, 0); cpu->pc += rs; } /* Immediate data. */ \
	/* Operations that mogrify (overwrite) memory directly. */ \
	t(0, 0x00000000, 0x00000200, 0x02000210, 0x02000210, 0x02000000, 0x00000000, 0x00000000, 0x00000000) { tmp = *reg; } /* Mogrifying register. */ \
	t(0, 0x00000000, 0x00000200, 0x00100310, 0x00000200, 0x00000000, 0x00000000, 0x00000000, 0x00000000) { ++tmp; } /* inc */ \
	t(0, 0x00000000, 0x00000000, 0x02000000, 0x02100110, 0x02000000, 0x00000000, 0x00000000, 0x00000000) { --tmp; } /* dec */ \
}

#undef ORTHO_1CC
#undef ORTHO_1OP
#undef ORTHO_2OP