summaryrefslogtreecommitdiff
path: root/src/MSL_C.PPCEABI.bare.H/k_tan.c
blob: 0c50c8ef56ee25c854f3dcbc7cbc06419638dfd4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
/* @(#)k_tan.c 1.2 95/01/04 */
/*
 * ====================================================
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 *
 * Developed at SunPro, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice
 * is preserved.
 * ====================================================
 */

/* __kernel_tan( x, y, k )
 * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
 * Input x is assumed to be bounded by ~pi/4 in magnitude.
 * Input y is the tail of x.
 * Input k indicates whether tan (if k=1) or
 * -1/tan (if k= -1) is returned.
 *
 * Algorithm
 *	1. Since tan(-x) = -tan(x), we need only to consider positive x.
 *	2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0.
 *	3. tan(x) is approximated by a odd polynomial of degree 27 on
 *	   [0,0.67434]
 *		  	         3             27
 *	   	tan(x) ~ x + T1*x + ... + T13*x
 *	   where
 *
 * 	        |tan(x)         2     4            26   |     -59.2
 * 	        |----- - (1+T1*x +T2*x +.... +T13*x    )| <= 2
 * 	        |  x 					|
 *
 *	   Note: tan(x+y) = tan(x) + tan'(x)*y
 *		          ~ tan(x) + (1+x*x)*y
 *	   Therefore, for better accuracy in computing tan(x+y), let
 *		     3      2      2       2       2
 *		r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
 *	   then
 *		 		    3    2
 *		tan(x+y) = x + (T1*x + (x *(r+y)+y))
 *
 *      4. For x in [0.67434,pi/4],  let y = pi/4 - x, then
 *		tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
 *		       = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
 */

#include "fdlibm.h"

#ifdef __STDC__
static const double
#else
static double
#endif
    one = 1.00000000000000000000e+00,    /* 0x3FF00000, 0x00000000 */
    pio4 = 7.85398163397448278999e-01,   /* 0x3FE921FB, 0x54442D18 */
    pio4lo = 3.06161699786838301793e-17, /* 0x3C81A626, 0x33145C07 */
    T[] = {
        3.33333333333334091986e-01,  /* 0x3FD55555, 0x55555563 */
        1.33333333333201242699e-01,  /* 0x3FC11111, 0x1110FE7A */
        5.39682539762260521377e-02,  /* 0x3FABA1BA, 0x1BB341FE */
        2.18694882948595424599e-02,  /* 0x3F9664F4, 0x8406D637 */
        8.86323982359930005737e-03,  /* 0x3F8226E3, 0xE96E8493 */
        3.59207910759131235356e-03,  /* 0x3F6D6D22, 0xC9560328 */
        1.45620945432529025516e-03,  /* 0x3F57DBC8, 0xFEE08315 */
        5.88041240820264096874e-04,  /* 0x3F4344D8, 0xF2F26501 */
        2.46463134818469906812e-04,  /* 0x3F3026F7, 0x1A8D1068 */
        7.81794442939557092300e-05,  /* 0x3F147E88, 0xA03792A6 */
        7.14072491382608190305e-05,  /* 0x3F12B80F, 0x32F0A7E9 */
        -1.85586374855275456654e-05, /* 0xBEF375CB, 0xDB605373 */
        2.59073051863633712884e-05,  /* 0x3EFB2A70, 0x74BF7AD4 */
};

#ifdef __STDC__
double __kernel_tan(double x, double y, _INT32 iy)
#else
double __kernel_tan(x, y, iy)
double x, y;
_INT32 iy;
#endif
{
  double z, r, v, w, s;
  _INT32 ix, hx;
  hx = __HI(x);         /* high word of x */
  ix = hx & 0x7fffffff; /* high word of |x| */
  if (ix < 0x3e300000)  /* x < 2**-28 */
  {
    if ((_INT32)x == 0) { /* generate inexact */
      if (((ix | __LO(x)) | (iy + 1)) == 0)
        return one / fabs(x);
      else
        return (iy == 1) ? x : -one / x;
    }
  }
  if (ix >= 0x3FE59428) { /* |x|>=0.6744 */
    if (hx < 0) {
      x = -x;
      y = -y;
    }
    z = pio4 - x;
    w = pio4lo - y;
    x = z + w;
    y = 0.0;
  }
  z = x * x;
  w = z * z;
  /* Break x^5*(T[1]+x^2*T[2]+...) into
   *	  x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
   *	  x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
   */
  r = T[1] + w * (T[3] + w * (T[5] + w * (T[7] + w * (T[9] + w * T[11]))));
  v = z * (T[2] + w * (T[4] + w * (T[6] + w * (T[8] + w * (T[10] + w * T[12])))));
  s = z * x;
  r = y + z * (s * (r + v) + y);
  r += T[0] * s;
  w = x + r;
  if (ix >= 0x3FE59428) {
    v = (double)iy;
    return (double)(1 - ((hx >> 30) & 2)) * (v - 2.0 * (x - (w * w / (w + v) - r)));
  }
  if (iy == 1)
    return w;
  else { /* if allow error up to 2 ulp,
            simply return -1.0/(x+r) here */
    /*  compute -1.0/(x+r) accurately */
    double a, t;
    z = w;
    __LO(z) = 0;
    v = r - (z - x);  /* z+v = r+x */
    t = a = -1.0 / w; /* a = -1.0/w */
    __LO(t) = 0;
    s = 1.0 + t * z;
    return t + a * (s + t * v);
  }
}